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Background

a Elbow fracture is one of the fracture types that happens most

frequently among people across all ages
= Needs timely diagnosis and treatment since it could cause neurovascular damage

= X-ray helps assessment by visualization
= Patients often take frontal and lateral view radiographies of elbow

= View not always labeled accurately
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Q Elbow fracture is one of the fracture types that happens most

frequently among people across all ages
= Needs timely diagnosis and treatment since it could cause neurovascular damage

= X-ray helps assessment by visualization
= Patients often take frontal and lateral view radiographies of elbow

= View not always labeled accurately

aQ Deep learning

= Thrives in recent years
= Have potential benefits to reduce treatment lead-time

= Comparable performance to human experts’
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Objective
aQ Two-step deep learning method

O Step 1: Develop a deep learning model that can predict view labels (frontal or
lateral) given the image.

O Step 2: Develop a multi-view deep learning method for elbow fracture
classification
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Method and Materials

O Method

= View labeling (frontal/lateral)
-~ Review the collected images by a board-certified radiologist
— Correct the labels of mislabeled images
— Train a CNN deep learning model on a binary classification task (frontal against lateral)
-~ Reassign labels to images
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Method and Materials

O Method

View labeling (frontal/lateral)

Review the collected images by a board-certified radiologist

Correct the labels of mislabeled images

Train a CNN deep learning model on a binary classification task (frontal against lateral)
Reassign labels to images

Multi-view-enabled elbow fracture classification.

Pair the frontal and lateral view images of the same patient

Feed the pairs into the model for feature extraction with Inception-Resnet-V2
Fuse the features for classification of elbow fracture

Evaluate the multi-view-enabled model as well as the single view model
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Method and Materials

a Materials

This is an IRB approved retrospective study

4,740 cases

Average patient age: 50.44, standard deviation: 20.42

Each with a frontal and a lateral view elbow X-ray image (9,480 in total)
1,598 images (631 frontal and 967 lateral) were mislabeled on the header

682 fractured cases, 4,058 non-fracture (normal) cases

90% data for training, 10% for testing
Evaluation metrics: accuracy, AUC
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Results

a View labeling
= 97% accuracy

Q Fracture classification

= Single view model
- AUC:0.94
— Accuracy: 89%

multi-view model
- AUC: 0.96
— Accuracy: 97%
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Discussion

We developed a two-step method to first assign correct view labels (frontal
vs. lateral) to images, and then use both views to detect fractures.

Our model is highly accurate in automatically categorizing elbow
radiographic views and detecting elbow fractures.

This kind of Al models can be helpful to assist radiologist assess multi-view
Images and automatically triage elbow radiographs to reduce treatment
lead-time.

Our study is a single-center study and further evaluation of the models are
required.
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Method

Q Scoring of different fracture subtypes

 Fracture images: 6 subtypes
= Assign scores from human expert’s knowledge

Table 2. Difficultness scoring of the normal cases and six subtype fractures of the elbow (1 — hardest; 100 — easiest).

(normal) (a) (b) (c) (d) (e) ()

30 70 40 90 10

) (c) o) (f

(d)

Figure 1. Six Subtypes of elbow fractures: (a) Ulnar fracture; (b) Radial fracture; (c) Humeral fracture; (d) Dislocation; () Complex
fracture/multi-type fracture; (f) Coronoid process fracture.
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Thank you!

Questions?

jul117@pitt.edu
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