

Introduction

Potential elbow fracture patients are often required to take both frontal view and lateral X-rays. In practice, having a single view is also common. Ulnar fracture Radial fracture Normal

Frontal view

Lateral view

- > Deep learning methods facilitate automation of elbow fracture diagnosis. Few existing methods leverage multiview information.
- > We propose a multiview deep learning network architecture for elbow fracture subtype classification that takes frontal and lateral view elbow radiographs.
 - ✓ Dual-view architecture, flexible inference (infer from images from either one view or two views)
 - Homogeneous transfer learning from single view models
 - Curriculum learning guided by quantified medical knowledge
- \succ Evaluation of our method:
 - Conduct experiments on a classification task of three classes of elbow fractures:
 - Normal
 - Ulnar fracture
 - Radial fracture

Method

- > Multiview model architecture
 - ✓ Model consists of three modules:
 - \mathcal{F} , frontal view module (green dotted line box)
 - \mathcal{L} , lateral view module (blue dotted line box)
 - \mathcal{M} , merge module (middle branch)
- \checkmark During training, a data sample triplet \mathcal{D}_i with frontal image $x_i^{(F)}$, lateral image $x_i^{(L)}$ and label y_i generates loss:

 $J_{\theta}(\mathcal{D}_{i}) = J_{\theta_{\mathcal{F}}}\left(x_{i}^{(F)}, y_{i}\right) + J_{\theta_{\mathcal{L}}}\left(x_{i}^{(L)}, y_{i}\right) + J_{\theta_{\mathcal{M}}}\left(x_{i}^{(F)}, x_{i}^{(L)}, y_{i}\right)$

University of Pittsburgh, Pittsburgh, PA, USA (jul117@pitt.edu)

Method features from frontal view Concatenate 🚫 🔳 features from ateral view

✓ During testing

- if both frontal and lateral view images are presented, the predicted label comes from \mathcal{M} . Otherwise, the predicted label comes from the
- corresponding module of the input (\mathcal{F} or \mathcal{L}).

Homogeneous transfer learning

- ✓ Train two single-view models
 - A frontal view model
 - A lateral view model

 \checkmark Transfer the trained weights to corresponding layers of multiview model (links in graph)

 Convolutional and FC layers' weights of single-view model to corresponding module of multiview model.

Knowledge-guided curriculum learning Quantified medical knowledge into scores representing classification difficulty of certain fracture subtype

	Normal	Ulnar	Radial
Frontal view only	30	30	30
Lateral view only	35	60	45
Both views	45	65	55

(scores given by radiologist, 1=hardest; 100=easiest)

Method (cont'd)

Experiments

- > Dataset
- ✓ 8-fold cross validation
- > Metrics

- ✓ [1] Jiménez-Sánchez et al., 2020
- ✓ Multiview with standard training
- Multiview with different combination of proposed learning strategies
- (denote proposed transfer learning and curriculum) learning strategy as TL and CL respectively)

- highest AUC and balanced accuracy with a margin of up to 0.118
- \checkmark with dual-view input, our method achieves the
- reaches highest performance per each metric competitive performance.
- ✓ with frontal view as only input, our method \checkmark with lateral view as only input, our method has

Knowledge-Guided Multiview Deep Curriculum Learning for Elbow Fracture Classification Jun Luo, Gene Kitamura, Dooman Arefan, Emine Doganay, Ashok Panigrahy, Shandong Wu University of Pittsburgh Medical Center, Pittsburgh, PA, USA (wus3@upmc.edu)

 \checkmark Permute training set at the beginning of every epoch

 Permutation by sampling without replacement Sampling probability at epoch *e* of sample *i* with score s_i is computed by

$$P_{i}^{(e)} = \begin{cases} \frac{S_{i}}{\sum_{k} S_{k}} & e = 1\\ p_{i}^{(e-1)} \cdot \frac{E'}{\sqrt{\frac{1/N}{p_{i}^{(1)}}}} & 2 \le e \le E'\\ 1/N & E' < e \le E \end{cases}$$

 \checkmark 982 subjects, each with a frontal and a lateral view X-ray image, 1,964 images in total

- 500 non-fracture (normal) cases
- 98 ulnar fractures cases
- 384 radial fracture cases

✓ Accuracy (denoted as Acc.) & AUC

✓ Balanced accuracy (mean of # true positive / # samples of each class, denoted as Bal'd acc.) ✓ Binary task accuracy (normal vs. fracture) ✓ Binary task AUC (normal vs. fracture)

Compared methods

- ✓ Single-view model
- ✓ [2] Luo et al., 2021

Compared with other methods (see results in next) column),

Experiments (cont'd)

Dual-viev

Single-viev Single-viev Multiview Multiview Multiview **Multiview** Multiview Multiview

Single-viev Single-view **Multiview** Multiview Multiview Multiview Multiview Multiview

Single-viev Single-view Multiview Multiview Multiview Multiview Multiview Multiview

Conclusion

Acknowledgements

W	input	and	sing	le-vie	W	inpu	ut i	resul	ts

del	Acc.	AUC	Bal'd acc.	Binary task acc.	Binary task AUC				
Dual-view input									
w-frontal	0.683	0.807	0.570	0.732	0.813				
w-lateral	0.856	0.954	0.807	0.895	0.959				
	0.854	0.958	0.796	0.884	0.964				
+ TL	0.891	0.966	0.847	0.916	0.973				
+ [1]	0.818	0.939	0.746	0.864	0.952				
+ [1] + TL	0.870	0.961	0.811	0.898	0.973				
+ CL	0.889	0.970	0.847	0.908	0.978				
+ CL + TL	0.889	0.974	0.864	0.910	0.976				
One-view input (frontal)									
<i>w</i> -frontal	0.720	0.828	0.593	0.761	0.844				
<i>w</i> + CL [2]	0.683	0.807	0.570	0.732	0.813				
	0.658	0.749	0.514	0.702	0.766				
+ TL	0.738	0.827	0.617	0.774	0.829				
+ [1]	0.566	0.675	0.396	0.575	0.648				
+ [1] + TL	0.737	0.815	0.605	0.773	0.831				
+ CL	0.723	0.814	0.602	0.761	0.823				
+ CL + TL	0.756	0.829	0.636	0.786	0.846				
One-view input (lateral)									
w-lateral	0.856	0.954	0.807	0.895	0.959				
w + CL [2]	0.840	0.946	0.809	0.872	0.948				
	0.844	0.951	0.800	0.870	0.956				
+ TL	0.848	0.954	0.804	0.876	0.961				
+ [1]	0.837	0.945	0.779	0.870	0.949				
+ [1] + TL	0.857	0.960	0.819	0.885	0.969				
+ CL	0.838	0.956	0.807	0.867	0.956				
+ CL + TL	0.840	0.955	0.794	0.874	0.960				

> Our method leverages multiview information for elbow fracture & incorporates medical knowledge. \succ Our method outperforms the compared methods, and inference functions seamlessly on multiview input and single-view input.

> NIH/NCI 1R01CA193603, 1R01CA218405 Pittsburgh Center for Al Innovation in Medical Imaging (Pitt Momentum Funds) Amazon Machine Learning Research Award.