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Introduction

)

» Potential elbow fracture patients are often required
to take both frontal view and lateral X-rays. In

practice, having a single view is also common.
Normal Ulnar fracture Radial fracture
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v During testing
* if both frontal and lateral view images are
presented, the predicted label comes from M.
* Otherwise, the predicted label comes from the
corresponding module of the input (F or £).

» Deep learning methods facilitate automation of
elbow fracture diagnosis. Few existing methods
leverage multiview information.

» Homogeneous transfer learning
v' Train two single-view models
« A frontal view model
* Alateral view model
v Transfer the trained weights to corresponding
layers of multiview model (links in graph)
» Convolutional and FC layers’ weights of
single-view model to corresponding module of
multiview model.

frontal-view-only model

» We propose a multiview deep learning network
architecture for elbow fracture subtype
classification that takes frontal and lateral view
elbow radiographs.

v Dual-view architecture, flexible inference (infer
from images from either one view or two views)
v Homogeneous transfer learning from single view

models
v' Curriculum learning guided by quantified
medical knowledge

» Evaluation of our method:
v' Conduct experiments on a classification task of
three classes of elbow fractures:
 Normal
 Ulnar fracture
 Radial fracture

Method

» Knowledge-guided curriculum learning
v Quantified medical knowledge into scores
representing classification difficulty of certain
fracture subtype

| Normal __ Ulnar | Radial
Frontal view only 30 30 30

35 60 45
45 65 55

(scores given by radiologist, 1=hardest; 100=easiest)

» Multiview model architecture
v Model consists of three modules:
« F, frontal view module (green dotted line box)
« L, lateral view module (blue dotted line box)
M, merge module (middle branch)
v" During training, a data sample triplet D; with

frontal image xl.(F), lateral image *Y and label Vi

i
generates loss:
L
Jo(D;) = Jo., (xi(F);Yi) + Jo, (xi(L);Yi) + Jo,, (XL(F)XL( );Yi)

Lateral view only
Both views

Method Method (cont’'d)

v Permute training set at the beginning of every
epoch
* Permutation by sampling without replacement
« Sampling probability at epoch e of sample i
with score s; iIs computed by

e = Single-view-frontal 0.683
2k Sk Single-view-lateral 0.856
(e) _ _ r|1/N Multivi 0.854

P = e E Y o<k o
‘ p-(l) Multiview + TL 0.891

l

\ Multiview + [1] 0.818
Multiview + [1] + TL 0.870
Experiments Multiview + CL 0.889
Multiview + CL+ TL 0.889

» Dataset
v' 982 subjects, each with a frontal and a lateral
view X-ray image, 1,964 images Iin total
» 500 non-fracture (normal) cases

Single-view-frontal 0.720
Single-view + CL [2] 0.683

Multiview 0.658

» 98 ulnar fractures cases —
+ 384 radial fracture cases S
v’ 8-fold cross validation Multiview + [1. 0.566
Multiview + [1] + TL 0.737
» Metrics Multiview + CL 0.723
v Accuracy (denoted as Acc.) & AUC Multiview + CL + TL 0.756

v Balanced accuracy (mean of # true positive / #
samples of each class, denoted as Bal'd acc.)

v' Binary task accuracy (normal vs. fracture)

v" Binary task AUC (normal vs. fracture)

Single-view-lateral 0.856
Single-view + CL [2] 0.840

Multiview 0.844

> COmpared methods Multiview + TL 0.848
v’ Single-view model Multiview + [1] 0.837

v [1] Jiménez-Sanchez et al., 2020 Multiview + [1] + TL 0.857
v [2] Luo et al., 2021 Multiview + CL 0.838
v Multiview with standard training Multiview + CL + TL 0.840

v Multiview with different combination of proposed
learning strategies

(denote proposed transfer learning and curriculum

learning strategy as TL and CL respectively)

Conclusion

Experiments (cont'd)
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Dual-view input
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One-view input (frontal)
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» Dual-view input and single-view input results

Binary | Binary
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» Our method leverages multiview information for
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elbow fracture & incorporates medical knowledge.

» Compared with other methods (see results in next
column),

v with dual-view input, our method achieves the
highest AUC and balanced accuracy with a
margin of up to 0.118

v" with frontal view as only input, our method
reaches highest performance per each metric

v with lateral view as only input, our method has
competitive performance.
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» Our method outperforms the compared methods,
and inference functions seamlessly on multiview
input and single-view input.
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