

24TH INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING & COMPUTER ASSISTED INTERVENTION

September 27 - October 1, 2021 • Strasbourg, FRANCE

University of Strasbourg

Knowledge-Guided Multiview Deep Curriculum Learning for Elbow Fracture Classification

Jun Luo¹, Gene Kitamura², Dooman Arefan², Emine Doganay², Ashok Panigrahy^{2,3}, and Shandong Wu^{1,2,4}

¹Intelligent Systems Program / ²Dept. of Radiology / ⁴Dept. of Biomedical Informatics and Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA ³University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, PA USA

Background

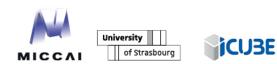
- Potential elbow fracture patients are often required to take both frontal view and lateral X-rays.
- Frontal view: distal humerus, proximal ulna, radius
- Lateral view: coronoid process, olecranon process
- In practice, it is also common only a single view is available/acquired.
- Deep learning has been shown effective in bone fracture detection and diagnose.
- Few has leveraged multiview information of elbow for deep learning.
- Clinical knowledge on qualitative imaging interpretation exists but usually is ignored in data-driven learning

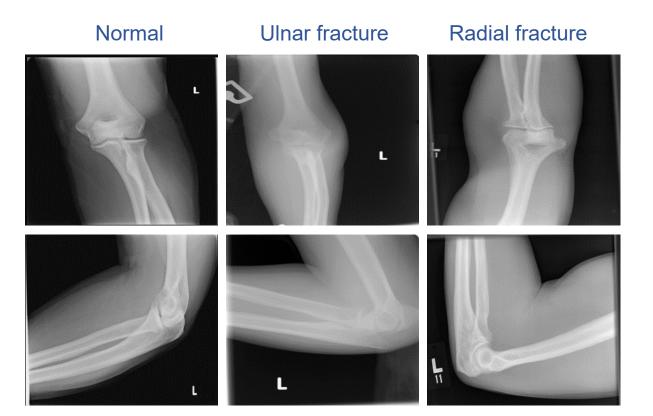
Contribution

- Investigate into a multiview deep learning architecture for elbow fracture diagnosis
- Develop a training strategy via homogeneous transfer learning and curriculum learning that leverages medical knowledge from radiologists.
- Evaluate our method on a three-class classification (Normal vs. Ulnar fracture vs. Radial fracture) task of elbow fracture.

Frontal view

Lateral view



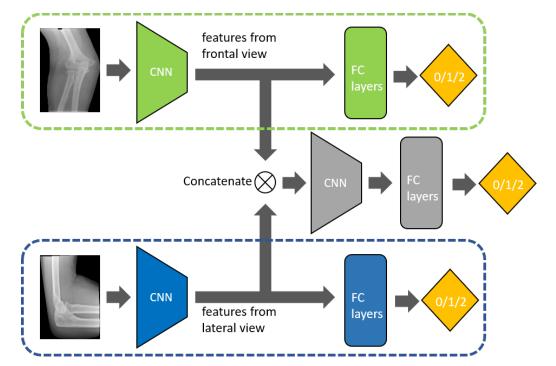


Multiview Model Architecture

- Model consists of three modules:
 - *F*, frontal view module (green dotted line box)
 - *L*, lateral view module (blue dotted line box)
 - *M*, merge module (middle branch)
- During training, a data sample triplet \mathcal{D}_i with frontal image $x_i^{(F)}$, lateral image $x_i^{(L)}$ and label y_i generates loss:

$$J_{\theta}(\mathcal{D}_{i}) = J_{\theta_{\mathcal{F}}}\left(x_{i}^{(F)}, y_{i}\right) + J_{\theta_{\mathcal{L}}}\left(x_{i}^{(L)}, y_{i}\right) + J_{\theta_{\mathcal{M}}}\left(x_{i}^{(F)}, x_{i}^{(L)}, y_{i}\right)$$

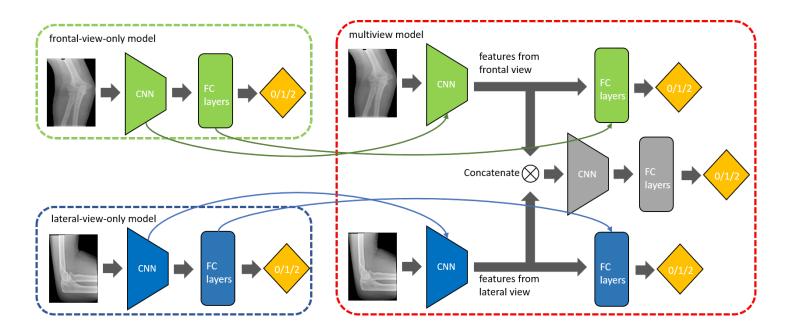
- During testing
 - if both frontal and lateral view images are presented, the predicted label comes from \mathcal{M} .
 - Otherwise, the predicted label comes from the corresponding module of the input (\mathcal{F} or \mathcal{L}).

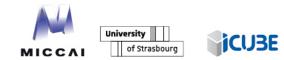


Homogeneous Transfer Learning

- Train two single-view models
 - A frontal view model
 - A lateral view model

- Transfer the trained weights to corresponding layers of multiview model (links in graph)
 - Convolutional and FC layers' weights of single-view model to corresponding module of multiview model.





Knowledge-guided Curriculum Learning

- Quantified medical knowledge into scores representing classification difficulty of certain fracture subtype
- Scores given by radiologist, 1=hardest; 100=easiest
- Permute training set at the beginning of every epoch
 - Permutation by sampling without replacement
 - Sampling probability at epoch *e* of sample *i* with score s_i is computed by

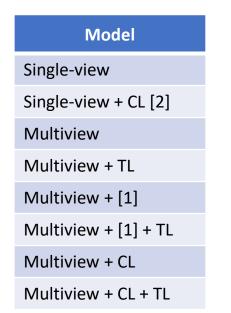
•
$$p_i^{(e)} = \begin{cases} \frac{s_i}{\Sigma_k s_k} & e = 1\\ p_i^{(e-1)} \cdot \frac{E'}{\sqrt{p_i^{(1)}}} & 2 \le e \le E'\\ 1/N & E' < e \le E \end{cases}$$

	Normal	Ulnar	Radial
Frontal view only	30	30	30
Lateral view only	35	60	45
Both views	45	65	55

Experiments

- Dataset
 - 982 subjects, each with a frontal and a lateral view X-ray image, 1,964 images in total
 - 500 non-fracture (normal) cases
 - 98 ulnar fractures cases
 - 384 radial fracture cases
 - 8-fold cross validation
- Metrics
 - Accuracy
 - AUC
 - Balanced accuracy (mean of # true positive / # samples of each class)
 - Binary task accuracy (normal vs. fracture)
 - Binary task AUC (normal vs. fracture)

- Single-view model
- [1] Jiménez-Sánchez et al., 2020
- [2] Luo et al., 2021
- Multiview with standard training
- Multiview with different combinations of proposed learning strategies



TL= proposed transfer learning strategy CL= proposed curriculum learning strategy

ICU3E

Experiments (cont'd)

• Dual-view input experiment results

Model	Accuracy	AUC	Balanced accuracy	Binary task accuracy	Binary task AUC
Single-view-frontal	0.683	0.807	0.570	0.732	0.813
Single-view-lateral	0.856	0.954	0.807	0.895	0.959
Multiview	0.854	0.958	0.796	0.884	0.964
Multiview + TL	0.891	0.966	0.847	0.916	0.973
Multiview + [1]	0.818	0.939	0.746	0.864	0.952
Multiview + [1] + TL	0.870	0.961	0.811	0.898	0.973
Multiview + CL	0.889	0.970	0.847	0.908	0.978
Multiview + CL + TL	0.889	0.974	0.864	0.910	0.976

• with dual-view input, our method achieves the highest AUC and balanced accuracy with a margin of up to 0.118

TL= proposed transfer learning strategy CL= proposed curriculum learning strategy

Experiments (cont'd)

- Single-view input experiment results
 - Frontal view as the only input

• Lateral view as the only input

Model	Accuracy	AUC	Balanced accuracy	Binary task accuracy	Binary task AUC	Accuracy	AUC	Balanced accuracy	Binary task accuracy	Binary task AUC
Single-view	0.720	0.828	0.593	0.761	0.844	0.856	0.954	0.807	0.895	0.959
Single-view + CL [2]	0.683	0.807	0.570	0.732	0.813	0.840	0.946	0.809	0.872	0.948
Multiview	0.658	0.749	0.514	0.702	0.766	0.844	0.951	0.800	0.870	0.956
Multiview + TL	0.738	0.827	0.617	0.774	0.829	0.848	0.954	0.804	0.876	0.961
Multiview + [1]	0.566	0.675	0.396	0.575	0.648	0.837	0.945	0.779	0.870	0.949
Multiview + [1] + TL	0.737	0.815	0.605	0.773	0.831	0.857	0.960	0.819	0.885	0.969
Multiview + CL	0.723	0.814	0.602	0.761	0.823	0.838	0.956	0.807	0.867	0.956
Multiview + CL + TL	0.756	0.829	0.636	0.786	0.846	0.840	0.955	0.794	0.874	0.960

- with frontal view as only input, our method reaches highest performance per each metric
- with lateral view as only input, our method has competitive performance.

TL= proposed transfer learning strategy CL= proposed curriculum learning strategy

Conclusion

- We proposed a novel method that leverages multiview information and incorporates qualitative medical knowledge into deep curriculum learning for elbow fracture detection.
- Our method demonstrated superior performance with both dual-view (frontal and lateral) input and single-view input.
- Clinical knowledge-guided deep learning is an important direction for future AI research in medical applications.

Acknowledgements

Intelligent Computing for Clinical Imaging (ICCI) Lab, University of Pittsburgh

- ✤ NIH/NCI R01 (#CA193603)
- ✤ NIH/NCI R01 (#EB032896)
- NIH/NCI R01 (#CA218405)
- ✤ NSF (OAC #2115082)
- PHDA / UPMC Enterprise
- Amazon Machine Learning Award
- RSNA Research Scholar Grant (#RSCH1530)
- Pittsburgh Center for Al Innovation in
 - Medical Imaging (Pitt Momentum Funds)
- UPCI-IPM Pilot Award (#MR2014-77613)
- Pitt CTSI Biomedical Modeling Pilot Award

24TH INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING & COMPUTER ASSISTED INTERVENTION September 27 - October 1, 2021 • Strasbourg, FRANCE



Thank you!

Questions? jul117@pitt.edu

www.miccai2021.org