Medical Knowledge-Guided Deep Curriculum Learning for Elbow Fracture Diagnosis from X-Ray Images

<u>Jun Luo, MS¹</u> Gene Kitamura, MD² Emine Doganay, PhD² Dooman Arefan, PhD² Shandong Wu, PhD^{1,2,3,4}

¹Intelligent Systems Program Department of ² Radiology / ³Biomedical Informatics / ⁴Bioengineering University of Pittsburgh

Background

Elbow fracture is one of the fracture types that happens most frequently among people across all ages

- Needs timely diagnosis and treatment since it could cause neurovascular damage [1]
- X-ray helps assessment by visualization
- A physician needs years of training to read and understand elbow X-ray

Background

Elbow fracture is one of the fracture types that happens most frequently among people across all ages

- Needs timely diagnosis and treatment since it could cause neurovascular damage [1]
- X-ray helps assessment by visualization
- A physician needs years of training to read and understand elbow X-ray

Deep learning

- Thrives in recent years
- Needs only hours of training on the elbow X-ray images to classify or detect
- Most methods are purely data-driven, not leveraging medical knowledge from physicians
- Some recent works investigate incorporating medical knowledge into deep learning.

Investigate how to incorporate clinical knowledge (medical expertise) to data-driven deep learning for elbow fracture classification

Develop a curriculum learning based methodology for training

Evaluate our method on whether it can improve from method without knowledge

Curriculum Learning

□ Curriculum learning [2]

- Let the machine mimic human learning by "first easy then hard"
- Has been applied in many areas
 - image classification [3]
 - object detection [4]
 - semantic segmentation
 - self/semi supervised learning [3]
 - multi-task learning
 - multi-modal learning [3]
- Appropriate to incorporate outside knowledge in nature (into definitions of "easy" and "hard"), but few works have done so especially in medical domain

[2] Bengio, Yoshua, et al. "Curriculum learning." Proceedings of the 26th annual international conference on machine learning. (2009).

[3] Gong, Chen, et al. "Multi-modal curriculum learning for semi-supervised image classification." IEEE Transactions on Image Processing 25.7 (2016): 3249-3260.

[4] Zhang, Dingwen, et al. "Leveraging prior-knowledge for weakly supervised object detection under a collaborative self-paced curriculum learning framework." International Journal of Computer Network (2019): 363-380.

Methodology

Propose a deep curriculum learning framework

- Incorporates medical knowledge from domain experts (radiologists) through a curriculum learning method on a binary (fracture Vs. normal) classification task of elbow fractures
- Knowledge represented as a quantification of a radiologist's clinical experience.
- Based on the knowledge, design a scoring criterion that scores each training image
- Create the curriculum that is guided by the scores
- Train the model according to the curriculum.

□ Scoring criterion

- A quantifiable criterion that reflects how hard it is to classify a certain subtype of elbow fracture in clinical practice
- Designed based on medical knowledge
- Score of an elbow X-ray image indicates the difficulty of diagnosing its fracture subtypes

Radial fracture

□ Scoring of different fracture subtypes

Fracture images: 6 subtypes

Figure 1. Six Subtypes of elbow fractures: (a) Ulnar fracture; (b) Radial fracture; (c) Humeral fracture; (d) Dislocation; (e) Complex fracture/multi-type fracture; (f) Coronoid process fracture.

Scoring of different fracture subtypes

- Fracture images: 6 subtypes
- Assign scores from human expert's knowledge

Figure 1. Six Subtypes of elbow fractures: (a) Ulnar fracture; (b) Radial fracture; (c) Humeral fracture; (d) Dislocation; (e) Complex fracture/multi-type fracture; (f) Coronoid process fracture.

□ Curriculum

- Permute the data at each epoch by sampling without replacement
- Sampling probability for each image is guided by the score

□ Curriculum

- Permute the data at each epoch by sampling without replacement
- Sampling probability for each image is guided by the score

□ Sampling probability (notation)

- Consider a triplet (x_i, y_i, f_i)
- Let $p_{i,(e)}$ be its sampling probability before the sampling at epoch e

□ Initialization of sampling probability

- $p_{i,(1)}$ computed from the scores for all images
- Let s_{f_k} be the score for image x_k

$$p_{i,(1)} = \frac{s_{f_i}}{\sum_{j=1}^N s_{f_j}}$$

□ Update of sampling probability

Update the value of sampling probability at the beginning of each epoch

$$\lambda_{i} = \sqrt[L]{\frac{p_{i,(final)}}{p_{i,(1)}}} = \sqrt[L]{\frac{1/N}{p_{i,(1)}}}$$
$$p_{i,(e)} = \begin{cases} p_{i,(e-1)} \cdot \lambda_{i}, & 2 \le e \le L \\ \frac{1}{N}, & L < e \le E \end{cases}$$

 Applicable to other curriculum learning framework with sampling without replacement strategy (later denoted as probability update algorithm)

Study cohort

Experiment of 1,865 elbow trauma patients, binary (665 fracture Vs. 1,200 normal) classification

- □ Testing
 - sample 100 out of 400 test set normal cases, classify against 73 test set fracture cases for more balanced ratio
 - Repeat the test 5 times, results reported are mean \pm standard deviation

Table 1. Number of images of the normal cases and six subtypes of the elbow fractures.									
Туре	(normal)	(a)	<i>(b)</i>	(c)	(d)	(e)	(f)	Total of <i>(a)-(f)</i> (<i>fracture</i>)	Total
Train	800	88	340	84	11	42	27	592	1392
Test	400	10	44	9	2	4	4	73	473
Total	1200	98	384	93	13	46	31	665	1865

Evaluation

Compared methods

- Baseline
 - Backbone: VGG16 [2]
 - Generally used random order (shuffle)
- A previous method, here refer to as MBDCL [3]
 - Backbone: VGG16
 - Also uses knowledge incorporated curriculum learning
 - Uses a different way of incorporating knowledge into the curriculum learning framework
 - Constant sampling probability
 - Initialization of sampling probability as ranking of difficultness

[2] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

[3] Jiménez-Sánchez, Amelia, et al. "Medical-based deep curriculum learning for improved fracture classification." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, (2019).

Evaluation

□ Anti-curriculum settings

- Opposite strategy of our curriculum
- Re-assign the difficultness scores by using 100 minus the original scores
- "Easy" in the original curriculum is considered "hard" in anti-curriculum and vis versa

Plug in our proposed update algorithm to improve an existing method

- Algorithm is applicable to sampling-based curriculum settings framework
- MBDCL + Update
- Anti-curriculum + Update

	Average on 5 Different Test Subsets (100 normal + 73 fracture)				
	Accuracy	AUC	Average Precision	F1 score	
Baseline	0.776±0.026	0.834±0.025	0.788 ± 0.043	0.716±0.032	
MBDCL ⁵	$0.797 {\pm} 0.025$	$0.865 {\pm} 0.019$	$0.831 {\pm} 0.029$	$0.763 {\pm} 0.022$	
MBDCL ⁵ + proposed update algorithm	0.806 ± 0.027	$0.878 {\pm} 0.022$	$0.847 {\pm} 0.035$	0.762 ± 0.029	
Ours	0.809±0.023	0.882 ± 0.020	0.852±0.036	0.778±0.024	
Anti-curriculum	0.765±0.032	0.863 ± 0.020	0.821±0.036	0.757±0.025	
Anti-curriculum + proposed update algorithm	$0.803 {\pm} 0.036$	0.871 ± 0.025	0.838 ± 0.045	$0.773 {\pm} 0.031$	

	Average on 5 Different Test Subsets (100 normal + 73 fracture)				
Comparison 1	Accuracy	AUC	Average Precision	F1 score	
Baseline	0.776±0.026	0.834 ± 0.025	0.788 ± 0.043	0.716±0.032	
MBDCL ⁵	$0.797 {\pm} 0.025$	$0.865 {\pm} 0.019$	$0.831 {\pm} 0.029$	0.763±0.022	
MBDCL ⁵ + proposed update algorithm	0.806±0.027	0.878 ± 0.022	0.847 ± 0.035	0.762 ± 0.029	
Ours	0.809±0.023	0.882 ± 0.020	0.852±0.036	0.778±0.024	
Anti-curriculum	0.765±0.032	0.863±0.020	0.821±0.036	0.757±0.025	
Anti-curriculum + proposed update algorithm	$0.803 {\pm} 0.036$	0.871 ± 0.025	0.838 ± 0.045	$0.773 {\pm} 0.031$	

	Average on 5 Different Test Subsets (100 normal + 73 fracture)				
Comparison 2	Accuracy	AUC	Average Precision	F1 score	
Baseline	0.776±0.026	0.834±0.025	0.788±0.043	0.716±0.032	
MBDCL ⁵	$0.797 {\pm} 0.025$	$0.865 {\pm} 0.019$	$0.831 {\pm} 0.029$	$0.763 {\pm} 0.022$	
MBDCL ⁵ + proposed update algorithm	0.806 ± 0.027	$0.878 {\pm} 0.022$	$0.847 {\pm} 0.035$	0.762 ± 0.029	
Ours	0.809±0.023	0.882 ± 0.020	0.852±0.036	0.778±0.024	
Anti-curriculum	0.765±0.032	0.863±0.020	0.821±0.036	0.757±0.025	
Anti-curriculum + proposed update algorithm	$0.803 {\pm} 0.036$	$0.871 {\pm} 0.025$	0.838 ± 0.045	$0.773 {\pm} 0.031$	

	Average on 5 Different Test Subsets (100 normal + 73 fracture)			
Comparison 3	Accuracy	AUC	Average Precision	F1 score
Baseline	0.776±0.026	0.834 ± 0.025	$0.788 {\pm} 0.043$	0.716±0.032
MBDCL ⁵	0.797±0.025	$0.865 {\pm} 0.019$	$0.831 {\pm} 0.029$	0.763 ± 0.022
MBDCL ⁵ + proposed update algorithm	0.806 ± 0.027	$0.878 {\pm} 0.022$	$0.847 {\pm} 0.035$	0.762 ± 0.029
Ours	0.809±0.023	0.882 ± 0.020	0.852±0.036	0.778±0.024
Anti-curriculum	0.765±0.032	$0.863 {\pm} 0.020$	$0.821 {\pm} 0.036$	0.757±0.025
Anti-curriculum + proposed update algorithm	0.803 ± 0.036	$0.871 {\pm} 0.025$	$0.838 {\pm} 0.045$	$0.773 {\pm} 0.031$

	Average on 5 Different Test Subsets (100 normal + 73 fracture)				
Comparison 4	Accuracy	AUC	Average Precision	F1 score	
Baseline	0.776±0.026	0.834±0.025	$0.788 {\pm} 0.043$	0.716±0.032	
MBDCL ⁵	$0.797 {\pm} 0.025$	$0.865 {\pm} 0.019$	$0.831 {\pm} 0.029$	$0.763 {\pm} 0.022$	
MBDCL ⁵ + proposed update algorithm	$0.806 {\pm} 0.027$	$0.878 {\pm} 0.022$	$0.847 {\pm} 0.035$	0.762 ± 0.029	
Ours	0.809±0.023	0.882 ± 0.020	0.852±0.036	0.778±0.024	
Anti-curriculum	0.765 ± 0.032	$0.863 {\pm} 0.020$	$0.821 {\pm} 0.036$	0.757±0.025	
Anti-curriculum + proposed update algorithm	0.803 ± 0.036	0.871±0.025	$0.838 {\pm} 0.045$	0.773±0.031	

Discussion

□ We designed a novel medical knowledge-guided deep curriculum

learning method for elbow fracture diagnoses from X-ray images.

- The knowledge is a pre-defined quantitative scoring criterion
 - based on classification difficulty of different elbow fracture subtypes
 - incorporation of radiologists' diagnosis knowledge

Discussion

□ Our results showed that by incorporating medical knowledge:

- Our method outperforms all other compared methods
- The anti-curriculum settings demonstrate inferior results as expected
- The proposed probability update algorithm can further enhance other curriculum learning methods.

 It will be a more effective way to augment the pure data-driven deep learning by leveraging the medical knowledge to the models.

Discussion

□ Limitations and future works

- The dataset:
 - Single-center study; we will need a larger dataset for further evaluation of our method.
- The classification is based on a single perspective (frontal view)
 - Reality: X-ray images often taken from multiple perspectives (frontal and lateral views)
 - Incorporating domain knowledge with different views might further improve the performance
- The scoring criterion on classification difficulty is based on single reader's knowledge
 - Different forms of the knowledge from multiple readers may be more helpful

Conclusion

Our study is a novel strategy for incorporating medical knowledge to guide and enhance data-driven deep learning for medical applications especially for elbow fracture diagnosis.

Our method demonstrates a new mechanism of defining and incorporating existing clinical experience and knowledge into artificial intelligence (AI) tools for clinical applications.

Knowledge-guided AI is an attractive direction of the future research for AI in medical applications.

Acknowledgement: Intelligent Computing for Clinical Imaging (ICCI) Lab, University of Pittsburgh

- ✤ NIH/NCI R01 (#CA193603)
- NIH/NCI R01 Supplement (#CA193603-S)
- ✤ NIH/NCI R01 (#CA218405)
- PHDA / UPMC Enterprise (Early Commercialization Development)
- Amazon Machine Learning Award
- RSNA Research Scholar Grant (#RSCH1530)
- UPCI-IPM Pilot Award (#MR2014-77613)
- Pitt CTSI Biomedical Modeling
 Pilot Award

Thank you! Questions?

jul117@pitt.edu