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• Federated learning (FL) – privacy preserving machine 
learning

• Pushes model to the clients that own privacy-sensitive data
• Only model weights are shared while keeping the data 

decentralized

• Federated learning poses data heterogeneity challenge
• Data heterogeneity – non-IID
• Potential influence

• slower convergence
• inferior performance
• Loss of clients’ incentives to participate in the federation

Background
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Example 1: 
medical image 
classification

Example 2: smart phone keyboard next-word prediction

[Hard et al., 2019]



• FL algorithms that address the data heterogeneity fall into two 
categories

• Generic FL algorithms (min
𝑤𝑤

𝑓𝑓𝐺𝐺 𝑤𝑤 = min
𝑤𝑤

∑𝑖𝑖=1𝑁𝑁 𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖(𝑤𝑤))
• Train a consensus global model that shared among all clients

• FedAvg [McMahan et al. 2017] 
• FedProx [Li et al., 2020]
• FedDyn [Acar et al., 2020]
• Etc.

• Personalized FL algorithms (min
𝑊𝑊

𝑓𝑓𝑃𝑃 𝑊𝑊 = min
𝑤𝑤𝑖𝑖,𝑖𝑖∈[𝑁𝑁]

𝑓𝑓𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑁𝑁) = min
𝑤𝑤𝑖𝑖,𝑖𝑖∈[𝑁𝑁]

∑𝑖𝑖=1𝑁𝑁 𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖(𝑤𝑤𝑖𝑖))
• Train multiple models (e.g. one model for each client)

• Combined with multi-task learning / meta-learning [Smith et al., 2017, Fallah et al., 2020]
• APFL [Deng et al., 2020]
• FedFOMO [Zhang et al., 2021]
• FedAMP [Huang et al., 2021]
• Etc.

Background & Related Work
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Shared
(global) 
model

M1 M2 M3

Personalized (local) models



• Investigate a personalized FL framework that 
adaptively learns how much each client can 
benefit from other clients’ models.

• Flexibly control the focus of training between 
global and local objectives.

Motivation

M1 M2 M3

Personalized (local) models
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Method

Client 1

𝑝𝑝1,1 +𝑝𝑝1,2 +𝑝𝑝1,3𝑤𝑤1
(𝑐𝑐) 𝑤𝑤2

(𝑐𝑐) 𝑤𝑤3
(𝑐𝑐)

• Adaptive Personalized Cross-Silo Federated Learning 
(APPLE)

• The model of a client
• Personalized model 𝑤𝑤𝑖𝑖

(𝑝𝑝): used to do inference on client 𝑖𝑖
• Core model 𝑤𝑤𝑖𝑖

𝑐𝑐 : a constructing part of personalized model 
on client 𝑖𝑖

• 𝑤𝑤𝑖𝑖
(𝑝𝑝) = ∑𝑗𝑗=1𝑁𝑁 𝑝𝑝𝑖𝑖,𝑗𝑗𝑤𝑤𝑗𝑗

(𝑐𝑐)

• Directed relationship (DR) vector 𝑝𝑝𝑖𝑖: learnable weights 
(coefficients for core models) on client 𝑖𝑖, always kept locally

𝑤𝑤1
(𝑝𝑝) =
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• Server
• Broadcast core models to 

each client at the beginning 
of each round

• Collect (updated) core models 
at the end of each round

Method

Server

𝑤𝑤1
(𝑐𝑐) 𝑤𝑤2

(𝑐𝑐) 𝑤𝑤3
(𝑐𝑐)

Client 2                    𝑝𝑝2,1, 𝑝𝑝2,2, 𝑝𝑝2,3

𝑤𝑤1
(𝑐𝑐) 𝑤𝑤2

(𝑐𝑐) 𝑤𝑤3
(𝑐𝑐)

Client 1

𝑝𝑝1,1 +𝑝𝑝1,2 +𝑝𝑝1,3𝑤𝑤1
(𝑐𝑐) 𝑤𝑤2

(𝑐𝑐) 𝑤𝑤3
(𝑐𝑐)

Client 3                    𝑝𝑝3,1, 𝑝𝑝3,2, 𝑝𝑝3,3

𝑤𝑤1
(𝑐𝑐) 𝑤𝑤2

(𝑐𝑐) 𝑤𝑤3
(𝑐𝑐)

• Local training
• Clients’ own core models and 

DR vectors are updated
• 𝑤𝑤𝑖𝑖

(𝑐𝑐) ← 𝑤𝑤𝑖𝑖
(𝑐𝑐) − 𝜂𝜂1

𝜕𝜕

𝜕𝜕𝑤𝑤𝑖𝑖
(𝑐𝑐) 𝐹𝐹𝑖𝑖(𝑤𝑤𝑖𝑖

(𝑝𝑝))

• 𝑝𝑝𝑖𝑖 ← 𝑝𝑝𝑖𝑖 − 𝜂𝜂2
𝜕𝜕
𝜕𝜕𝑝𝑝𝑖𝑖

𝐹𝐹𝑖𝑖(𝑤𝑤𝑖𝑖
(𝑝𝑝))
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• Proximal Directed Relationships
• Since downloaded core models are not trained from local empirical risk, training might be drawn 

to resembling individual learning (DR matrix drawn to identity matrix)
• Penalize DR vector by a proximal term

• 𝐹𝐹𝑖𝑖 𝑤𝑤𝑖𝑖
𝑝𝑝 = 1

𝑛𝑛𝑖𝑖
∑𝜉𝜉∈𝐷𝐷𝑖𝑖𝑡𝑡𝑡𝑡 ℒ 𝑤𝑤𝑖𝑖

𝑝𝑝 ; 𝜉𝜉 + 𝜆𝜆 𝑟𝑟 𝜇𝜇
2
𝑝𝑝𝑖𝑖 − 𝑝𝑝0 2

2

• Prox-center 𝑝𝑝0 = [𝑛𝑛1
𝑛𝑛

, … , 𝑛𝑛𝑁𝑁
𝑛𝑛

]
• Loss scheduler 𝜆𝜆 𝑟𝑟 ∈ [0,1]: a decreasing function w.r.t. current round, controls the focus of 

training; 𝜇𝜇: the peak value of the proximal term coefficient
• Proximal term coefficient: ∞ FedAvg; large  facilitate learning global high-level feature; 

small  concentrate on local empirical risk, learning the personalization

Method
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• Datasets

• Two benchmark datasets
• MNIST
• CIFAR10

• Two medical imaging datasets from MedMNIST
collection [Yang et al., 2021]

• OrganMNIST (axial) (11-class liver tumor images)
• PathMNIST (9-class colorectal cancer images)

Experiments

PathMNIST OraganMNIST (axial)
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• Two non-IID settings

• Pathological non-IID
• Randomly select 2 classes for each client
• In each class, assign a random number of images

• Practical non-IID
• Randomly partition each class of the dataset into 12 shards 

(10 x 1%, 1 x 10%, 1 x 80%)
• Randomly assign one shard from each class to each client
• Allows each client to have images from all classes, with more 

images from some classes while less from others
• A simulation that is closer to real-world medical applications

Experiments
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• Evaluation metrics
• Numerical metrics: two types of test accuracies

• Best Mean Client Test Accuracy (BMCTA)
• Mean over all clients
• Best over all rounds

• Plots
• Training loss curve
• Test accuracy curve
• Client wise test accuracies bar chart

Experiments
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• Compared baselines
• Separate training
• FedAvg (McMahan et al., 2017)
• FedAvg-local
• FedAvg-FT, FedProx-FT (Wang et al., 2019)
• APFL (Deng et al., 2020)
• HeurFedAMP (Huang et al., 2021)
• FedFomo (Zhang et al., 2021)



• Pathological non-IID

Results
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• Visualization of Directed Relationships (Pathological non-IID)
Results
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Visualization of DR                                                           Data distribution



• Visualization of Directed Relationships (Pathological non-IID)
Results
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Visualization of DR                                                           Data distribution



• Visualization of Directed Relationships (Pathological non-IID)
Results
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Visualization of DR                                                           Data distribution
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• Practical non-IID

Results



• Visualization of Directed Relationships (Practical non-IID)
Results
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Visualization of DR                                                           Data distribution



Results

• Under limited bandwidth
• Restrict the number of models (𝑀𝑀) a client 

can download per round with 1 ≤ 𝑀𝑀 ≤
𝑁𝑁 − 1

• Client 𝑗𝑗’s core model will be downloaded to 
client 𝑖𝑖 with a probability positively 
correlated to |𝑝𝑝𝑖𝑖,𝑗𝑗|.

• We limited 𝑀𝑀 = 1, 2, 5, 7, 11 (𝑁𝑁 = 12), 
and compared our method against 
FedFomo.
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• We proposed a personalized approach for cross-silo federated learning that
• Allows clients to adaptively learn how much they can benefit from other clients’ models
• Flexibly controls the training focus between learning from global collaboration and local objective

• Our work does have some limitations, making it suitable only for a small federation (e.g. 
cross-silo FL)

• Downloading the other clients’ core models increases the communication overhead.
• Training the DR vector – the coefficients for the core models – increases the local computing overhead.

• In the future, we will investigate personalized FL leveraging information or knowledge of 
datasets of the clients.

Conclusion
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Thank you!

Jun Luo
jul117@pitt.edu

20

• Check out the full version of the paper (with the Appendix included) at 
https://arxiv.org/abs/2110.08394.

• The code is publicly available at https://github.com/ljaiverson/pFL-APPLE. 
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