

FedSLD: Federated Learning with Shared Label Distribution for Medical Image Classification

Jun Luo^a and Shandong Wu^{a,b,c,d}

^aIntelligent Systems Program / ^bDept. of Radiology / ^cDept. of Biomedical Informatics / ^dDept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA

Background

- Deep learning requires a large amount of data
 - Large medical datasets are difficult to collect
 - Medical data is privacy-sensitive
 - Laws and regulations (e.g. HIPAA, GDPR) make it hard to share data
- Federated learning (FL) privacy preserving machine learning
 - Push model to the clients
 - Only model weights are shared while keeping the data decentralized

Background

- Federated learning poses data heterogeneity challenge
 - Data heterogeneity non-IID
 - Medical datasets are often non-IID
 - Different data acquisition protocols
 - Different local demographics
 - Etc.
 - Potential influence
 - slower convergence
 - inferior performance
 - Loss of clients' incentives to participate in the federation

Purpose

- Investigate a federated learning algorithm, *Federated Learning with Shared Label Distribution* (FedSLD), for classification task, under a cross-silo (medical institutions) setting
- Focus on the data heterogeneity challenge of federated learning, assuming legitimate for the clients to share the number of samples in each class
- Evaluate the proposed algorithm on four datasets under two kinds of non-IID data distributions

Method

- Assumption
 - FedAvg [1] assumption
 - Weighted sum of local empirical risks
 - Weights are often $n_i / \sum_j n_j$
 - Assumes knowledge of <u>number of samples</u>
 - FedSLD
 - Assumes knowing <u>number of samples in each class</u>
 - This assumption usually holds true for cross-silo FL, including medical setting
 - Estimate of label distribution

n_{1,c}

EEE ISBI 2022 International Symposium on Biomedical Imaging

Method

- Estimation of label distribution
 - Non-IID: $\mathcal{P}_i(x, y) \neq \mathcal{P}_j(x, y)$
 - By Bayes' theorem, $\mathcal{P}_i(x|y)\mathcal{P}_i(y) \neq \mathcal{P}_j(x|y)\mathcal{P}_j(y)$
 - Aggregate knowledge of #samples in each class, estimate $\mathcal{P}(y)$ by

$$\tilde{\mathcal{P}}(y=c) = \frac{\sum_{i=1}^{N} n_{i,c}}{\sum_{i=1}^{N} n_i}$$

Method

- Compute the percentage of each class in each mini-batch
 - During local update, given a batch of data $\{(x_k, y_k)\}_{k=1}^B$ with B data samples, compute

$$p_b(y=c) = \frac{\sum_{k=1}^{B} [[y_k = c]]}{B}$$

Method

- Weigh each data samples' contribution to the loss based on
 - The estimation of the prior of each class
 - The percentage of each class in each mini-batch
- Final loss of the mini-batch

$$\mathcal{L}_{b}\big(\{(x_{k}, y_{k})\}_{k=1}^{B}\big) = -\sum_{k=1}^{B} \left(\frac{p_{b}(y = y_{k})}{\tilde{\mathcal{P}}(y = y_{k})} \cdot \sum_{c=1}^{C} y_{k,c} \log(f_{i}(x_{k}))_{c}\right)$$

Aggregate the model at the end of each training round as in FedAvg

Algorithm 1 FedSLD.

Input: Initialized model parameter weights w^0 , number of clients N, number of local epochs E, batch size B, is the batch size, learning rate η , number of rounds R.

1: $\forall i \in [N], c \in [C]$, acquire $n_{i,c}$, client *i*'s numbers of samples of each class *c*.

2: $\forall c \in [C], \tilde{\mathcal{P}}(y = c) = \frac{\sum_{i=1}^{N} n_{i,c}}{\sum_{i=1}^{N} n_i}$ // compute estimated prior label distribution. 3: for $r \leftarrow 1, 2, ..., R$ do $\forall i \in [N] \ w_i^r = w^{r-1} // \text{broadcast model parameters.}$ for $i \leftarrow 1, 2, ..., N$ in parallel do 5: for $\{x_k, y_k\}_{k=1}^B$ in all minibatches do 6: $\forall c, \ p_b(y=c) \leftarrow \sum_{k=1}^B \llbracket y_k = c \rrbracket / B$ 7: Compute loss \mathcal{L}_b by Equation 3. 8: $w_i^r \leftarrow w_i^r - \eta \nabla_w \mathcal{L}_b$ 9: end for 10: end for 11: $w^r = \sum_{i=1}^N \frac{n_i}{n} w_I^r // \text{aggregate model updates}$ 13: end for 14: return w^R

Experiments

- Datasets ullet
 - Two benchmark datasets ٠
 - MNIST ۲
 - CIFAR10 ۲
 - Two medical imaging datasets from MedMNIST [2] ٠ collection
 - OrganMNIST (axial) (11-class liver tumor images) •
 - PathMNIST (9-class colorectal cancer images) ٠

OraganMNIST (axial)

Experiments

- Two non-IID settings
 - Pathological non-IID
 - Randomly select 2 classes for each client
 - In each class, assign a random number of images
 - Practical non-IID
 - Randomly partition each class of the dataset into 12 shards (10 x 1%, 1 x 10%, 1 x 80%)
 - Randomly assign one shard from each class to each client
 - Allows each client to have images from all classes, with more images from some classes while less from others
 - A simulation that is closer to real-world medical applications

Compared baselines

University of

- FedAvg
- FedProx [3]

Experiments

- Evaluation metrics
 - Numerical metrics: two types of test accuracies
 - Best Mean Client Test Accuracy (BMCTA)
 - Mean over all clients
 - Best over all rounds
 - Best Test Accuracy (BTA)
 - Computed the highest test accuracy for the combined test set from each client
 - Plots
 - Training loss curve
 - Test accuracy curve
 - For fairness, density estimation on the clients' test accuracies
 - Higher density at higher accuracy reflects better result

Results

• Pathological non-IID results

ВМСТА/ВТА	MNIST	CIFAR10	Organ- MNIST	Path- MNIST
FedAvg	95.60/95.92	51.50/51.39	59.52/64.99	95.60/95.92
FedProx	95.71/95.98	51.39/51.24	59.44/65.10	95.71/95.98
FedSLD (Ours)	95.74/96.03	50.81/50.71	59.70/66.13	95.74/96.03

Results

• Practical non-IID results

ВМСТА/ВТА	MNIST	CIFAR10	Organ- MNIST	Path- MNIST
FedAvg	93.41/94.15	32.07/35.46	82.32/85.69	52.70/57.38
FedProx	93.45/94.20	31.98/35.38	81.53/85.54	52.77/57.72
FedSLD (Ours)	95.56/95.85	37.48/37.79	84.75/84.75	53.87/57.90

Discussions

- We designed a novel federated learning algorithm for medical image classification task, simulating a real-world cross-silo (medical institutions) setting.
 - Leverage the information of number of samples in each class as knowledge of clients' label distribution
 - Weigh each sample's contribution to the local empirical risk
 - Introduce a practical non-IID setting that aims to mimic real-world medical setting
- Results show that our FL algorithm outperforms the baselines in most cases on four datasets under two non-IID settings
 - Faster convergence and better performance
 - Reduced variance of clients' test accuracy implies a more fair training

Conclusion

- Our work proposed a novel FL algorithm for classification tasks that aims to mitigate the negative influence of data heterogeneity in cross-silo medical applications.
- Our method demonstrates that leveraging the information in terms of the shared label distribution will produce a faster and better convergence, and encourage a fair training across all clients.
- As information regarding the dataset at medical silos is used, the proposed FedSLD can perform better on heterogenous data for federated learning in medical domains.

Acknowledgements:

Intelligent Computing for Clinical Imaging (ICCI) Lab, University of Pittsburgh

- NIH/NCI #1R01CA218405, a NSF grant (CICI:SIVD:2115082), the grant 1R01EB032896 as part of the NSF/NIH Smart Health and Biomedical Research in the Era of Artificial Intelligence and Advanced Data Science Program, and a Pilot Research Project from the Scaling Grant of the Pitt Momentum Funds for the Pittsburgh Center for AI Innovation in Medical Imaging.
- Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562, NSF award number ACI-1928147, at the Pittsburgh Supercomputing Center (PSC).
- Pilot Research Project of the Pittsburgh Center for AI Innovation in Medical Imaging and the associated Pitt Momentum Funds of a Scaling grant from the University of Pittsburgh (2020)

Thank you!

Jun Luo jul117@pitt.edu