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Background

* Deep learning requires a large amount of data
* Large medical datasets are difficult to collect
* Medical data is privacy-sensitive
* Laws and regulations (e.g. HIPAA, GDPR) make it
hard to share data

Federated Server

/Medical Center \ (ResearchCenter \ /CommunityHospitaI\
* Federated learning (FL) — privacy preserving |

machine learning
e Push model to the clients
* Only model weights are shared while keeping the
data decentralized
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Background

* Federated learning poses data heterogeneity

challenge
* Data heterogeneity — non-IID
* Medical datasets are often non-IID

» Different data acquisition protocols
° Different |Oca| demographics /Mef:lical ;entér \ (Research Cenffar \ /Community H?spital\

0 . L F N

Federated Server

* Potential influence
* slower convergence
* inferior performance
* Loss of clients’ incentives to participate in the
federation




\V

IEEE ISBI 2022

International Symposium on
Biomedical Imaging

University of
w Pittsburgh

Purpose

* Investigate a federated learning algorithm, Federated
Learning with Shared Label Distribution (FedSLD), for
classification task, under a cross-silo (medical
institutions) setting

Federated Server

/Medical Center \

* Focus on the data heterogeneity challenge of federated ; E
learning, assuming legitimate for the clients to share
the number of samples in each class

/Community Hospital\

* Evaluate the proposed algorithm on four datasets
under two kinds of non-IID data distributions
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Method

* Assumption Client 1
* FedAvg [1] assumption LcA

* Weighted sum of local empirical risks
* Weights are often n;/ ). ; n; I I

* Assumes knowledge of number of samples 4 ﬂ &

* FedSLD Client N
* Assumes knowing number of samples in each class T, cq
* This assumption usually holds true for cross-silo FL,
including medical setting
* Estimate of label distribution

[1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.
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Method
e Estimation of label distribution Client 1
* Non-lID: P;(x,y) # P;(x,y)
* By Bayes’ theorem, P;(x|y)P;(y) # P;(x|y)P;(y) I I

» Aggregate knowledge of #samples in each class, estimate P (y) %ﬂ - .
by . Client N

N NN,cA

s ]




IEEE ISBI 2022

Un1vers1ty of
s s o Plttsburgh

Method
 Compute the percentage of each class in each mini-batch
* During local update, given a batch of data {(xy, y;) i, with B B
data samples, compute ﬁ&
B [[ —_ % ﬂ .
= y - C]]
pp(y =) = == - -
A —A

20% 50%  30%
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M et h O d Algorithm 1 FedSLD.
Input: Initialized model parameter weights w°, number of
¢ WElgh each data Samples' contribution to the loss clients N, number of local epochs E, batch size B, is the
batch size, learning rate 7, number of rounds F.
based on I: Vi € [N].c € [C], acquire n; ., client 7’s numbers of
* The estimation of the prior of each class samples of each class c.

N N
2 Ve e [Cl,Ply =¢) = % /I compute estimated
i=1 """

* The percentage of each class in each mini-batch

prior label distribution.

3: forr+ 1.2,.... R do

* Final loss of the mini-batch 4: Vi € [N]w! = w"™! // broadcast model parameters.

B c 5: for: 1,2, ...,}J;V in parallel do
25 (Y = Vi) 6: for {xy. yr},,_, inall m;nlbatches do
L X, B =—z — . lo (x 7: Ve, pply =c) <> v 1lyxr = ¢]/B
b({( k yk)}k_l) Py =yi) Vi g(fl( k))c 8: Compute loss £, by %qluation
k=1 c=1 9: wy 4w —nVy, Ly
10: end for
o 11: end for
* Aggregate the model at the end of each training 122w’ =N "7/ aggregate model updates

13: end for

round as in FedAvg 14 return w?
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Experiments

 Datasets

* MNIST
* CIFAR10

* Two benchmark datasets PathMNIST OraganMNIST (axial)
& 3 LT

 Two medical imaging datasets from MedMNIST [2]
collection
* OrganMNIST (axial) (11-class liver tumor images)
e PathMNIST (9-class colorectal cancer images)

[2] Yang, Jiancheng, Rui Shi, and Bingbing Ni. "Medmnist classification decathlon: A lightweight automl benchmark for medical image analysis." 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021.
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Experiments

* Two non-IID settings * Compared baselines
* FedAvg

* Pathological non-IID * FedProx [3]

 Randomly select 2 classes for each client
* In each class, assign a random number of images

* Practical non-IID
* Randomly partition each class of the dataset into 12 shards
(10x 1%, 1 x 10%, 1 x 80%)
* Randomly assign one shard from each class to each client
* Allows each client to have images from all classes, with more
images from some classes while less from others
* Asimulation that is closer to real-world medical applications

[3] Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine Learning and Systems 2 (2020): 429-450.
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Experiments

* Evaluation metrics
* Numerical metrics: two types of test accuracies
e Best Mean Client Test Accuracy (BMCTA)
* Mean over all clients
* Best over all rounds
* Best Test Accuracy (BTA)
 Computed the highest test accuracy for the combined test set from each client

* Plots
* Training loss curve
e Test accuracy curve
* For fairness, density estimation on the clients’ test accuracies
* Higher density at higher accuracy reflects better result
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Results
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Discussions

 We designed a novel federated learning algorithm for medical image

classification task, simulating a real-world cross-silo (medical institutions) setting.

* Leverage the information of number of samples in each class as knowledge of clients’ label
distribution

* Weigh each sample’s contribution to the local empirical risk
* Introduce a practical non-IID setting that aims to mimic real-world medical setting

* Results show that our FL algorithm outperforms the baselines in most cases on

four datasets under two non-IID settings
* Faster convergence and better performance
* Reduced variance of clients’ test accuracy implies a more fair training
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Conclusion

* Our work proposed a novel FL algorithm for classification tasks that aims to
mitigate the negative influence of data heterogeneity in cross-silo medical
applications.

* Our method demonstrates that leveraging the information in terms of the
shared label distribution will produce a faster and better convergence, and
encourage a fair training across all clients.

* Asinformation regarding the dataset at medical silos is used, the proposed
FedSLD can perform better on heterogenous data for federated learning in
medical domains.
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