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• Deep learning requires a large amount of data
• Large medical datasets are difficult to collect
• Medical data is privacy-sensitive
• Laws and regulations (e.g. HIPAA, GDPR) make it 

hard to share data

• Federated learning (FL) – privacy preserving 
machine learning

• Push model to the clients
• Only model weights are shared while keeping the 

data decentralized

Background



• Federated learning poses data heterogeneity 
challenge

• Data heterogeneity – non-IID
• Medical datasets are often non-IID

• Different data acquisition protocols
• Different local demographics
• Etc.

• Potential influence
• slower convergence
• inferior performance
• Loss of clients’ incentives to participate in the 

federation

Background



• Investigate a federated learning algorithm, Federated 
Learning with Shared Label Distribution (FedSLD), for 
classification task, under a cross-silo (medical 
institutions) setting

• Focus on the data heterogeneity challenge of federated 
learning, assuming legitimate for the clients to share 
the number of samples in each class

• Evaluate the proposed algorithm on four datasets 
under two kinds of non-IID data distributions

Purpose
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• Assumption
• FedAvg [1] assumption

• Weighted sum of local empirical risks
• Weights are often 𝑛𝑛𝑖𝑖/∑𝑗𝑗 𝑛𝑛𝑗𝑗
• Assumes knowledge of number of samples

• FedSLD
• Assumes knowing number of samples in each class

• This assumption usually holds true for cross-silo FL, 
including medical setting

• Estimate of label distribution

Method
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• Estimation of label distribution

• Non-IID: 𝒫𝒫𝑖𝑖 𝑥𝑥,𝑦𝑦 ≠ 𝒫𝒫𝑗𝑗 𝑥𝑥,𝑦𝑦
• By Bayes’ theorem, 𝒫𝒫𝑖𝑖 𝑥𝑥 𝑦𝑦 𝒫𝒫𝑖𝑖 𝑦𝑦 ≠ 𝒫𝒫𝑗𝑗 𝑥𝑥 𝑦𝑦 𝒫𝒫𝑗𝑗(𝑦𝑦)

• Aggregate knowledge of #samples in each class, estimate 𝒫𝒫 𝑦𝑦
by

�𝒫𝒫 𝑦𝑦 = 𝑐𝑐 =
∑𝑖𝑖=1𝑁𝑁 𝑛𝑛𝑖𝑖,𝑐𝑐
∑𝑖𝑖=1𝑁𝑁 𝑛𝑛𝑖𝑖
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• Compute the percentage of each class in each mini-batch

• During local update, given a batch of data 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 𝑘𝑘=1
𝐵𝐵 with 𝐵𝐵

data samples, compute

𝑝𝑝𝑏𝑏 𝑦𝑦 = 𝑐𝑐 =
∑𝑘𝑘=1𝐵𝐵 𝑦𝑦𝑘𝑘 = 𝑐𝑐

𝐵𝐵

Method
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• Weigh each data samples’ contribution to the loss 
based on

• The estimation of the prior of each class
• The percentage of each class in each mini-batch

• Final loss of the mini-batch

ℒ𝑏𝑏 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 𝑘𝑘=1
𝐵𝐵 = −�

𝑘𝑘=1

𝐵𝐵
𝑝𝑝𝑏𝑏(𝑦𝑦 = 𝑦𝑦𝑘𝑘)
�𝒫𝒫(𝑦𝑦 = 𝑦𝑦𝑘𝑘)

⋅�
𝑐𝑐=1

𝐶𝐶

𝑦𝑦𝑘𝑘,𝑐𝑐 log 𝑓𝑓𝑖𝑖 𝑥𝑥𝑘𝑘 𝑐𝑐

• Aggregate the model at the end of each training 
round as in FedAvg

Method
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• Datasets

• Two benchmark datasets
• MNIST
• CIFAR10

• Two medical imaging datasets from MedMNIST [2] 
collection

• OrganMNIST (axial) (11-class liver tumor images)
• PathMNIST (9-class colorectal cancer images)

Experiments

PathMNIST OraganMNIST (axial)
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• Two non-IID settings

• Pathological non-IID
• Randomly select 2 classes for each client
• In each class, assign a random number of images

• Practical non-IID
• Randomly partition each class of the dataset into 12 shards 

(10 x 1%, 1 x 10%, 1 x 80%)
• Randomly assign one shard from each class to each client
• Allows each client to have images from all classes, with more 

images from some classes while less from others
• A simulation that is closer to real-world medical applications

Experiments
• Compared baselines

• FedAvg
• FedProx [3]



• Evaluation metrics
• Numerical metrics: two types of test accuracies

• Best Mean Client Test Accuracy (BMCTA)
• Mean over all clients
• Best over all rounds

• Best Test Accuracy (BTA)
• Computed the highest test accuracy for the combined test set from each client

• Plots
• Training loss curve
• Test accuracy curve
• For fairness, density estimation on the clients’ test accuracies

• Higher density at higher accuracy reflects better result

Experiments



Results

BMCTA/BTA MNIST CIFAR10 Organ-
MNIST

Path-
MNIST

FedAvg 95.60/95.92 51.50/51.39 59.52/64.99 95.60/95.92

FedProx 95.71/95.98 51.39/51.24 59.44/65.10 95.71/95.98

FedSLD
(Ours) 95.74/96.03 50.81/50.71 59.70/66.13 95.74/96.03

• Pathological non-IID results



Results

BMCTA/BTA MNIST CIFAR10 Organ-
MNIST

Path-
MNIST

FedAvg 93.41/94.15 32.07/35.46 82.32/85.69 52.70/57.38

FedProx 93.45/94.20 31.98/35.38 81.53/85.54 52.77/57.72

FedSLD
(Ours) 95.56/95.85 37.48/37.79 84.75/84.75 53.87/57.90

• Practical non-IID results



• We designed a novel federated learning algorithm for medical image 
classification task, simulating a real-world cross-silo (medical institutions) setting.

• Leverage the information of number of samples in each class as knowledge of clients’ label 
distribution

• Weigh each sample’s contribution to the local empirical risk
• Introduce a practical non-IID setting that aims to mimic real-world medical setting

• Results show that our FL algorithm outperforms the baselines in most cases on 
four datasets under two non-IID settings

• Faster convergence and better performance
• Reduced variance of clients’ test accuracy implies a more fair training

Discussions



• Our work proposed a novel FL algorithm for classification tasks that aims to 
mitigate the negative influence of data heterogeneity in cross-silo medical 
applications.

• Our method demonstrates that leveraging the information in terms of the 
shared label distribution will produce a faster and better convergence, and
encourage a fair training across all clients.

• As information regarding the dataset at medical silos is used, the proposed 
FedSLD can perform better on heterogenous data for federated learning in 
medical domains.

Conclusion
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