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• In existing personalized FL (pFL) algorithms (with heterogeneous data), the way in 
which the collaborative knowledge transfers from the server to the clients is implicit.

• Collaborative knowledge: non-local information
• E.g., Global FL’s objective: 𝐹𝐹 𝜃𝜃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  = ∑𝑖𝑖 𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖(𝜃𝜃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

• Explicitness (as opposite of implicitness): Direct engagement of multiple clients’ empirical risks 
(explicit since not embed non-local info into model weights or regularization)

• E.g., Global FL’s objective: 𝐹𝐹 𝜃𝜃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  = ∑𝑖𝑖 𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖(𝜃𝜃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) where 𝐹𝐹𝑖𝑖(𝜃𝜃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) = 𝑓𝑓𝑖𝑖(𝜃𝜃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)
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Motivation
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• Why explicit (especially for personalized model update)?
• (Explicitness: Direct engagement of multiple clients’ empirical risks)
• Intuition/motivation: facilitate the generalizability of 𝜃𝜃𝑖𝑖  directly by penalizing its performance over 

other clients’ empirical risks.
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• Why explicit (especially for personalized model update)?
• (Explicitness: Direct engagement of multiple clients’ empirical risks)
• Intuition/motivation: facilitate the generalizability of 𝜃𝜃𝑖𝑖  directly by penalizing its performance over 

other clients’ empirical risks.

• Toy experiment on exemplar design 
• Cifar10, 100 heterogeneous clients
• Explicit: 𝐹𝐹𝑖𝑖 𝜃𝜃𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝜃𝜃𝑖𝑖 + 𝜇𝜇

𝑁𝑁−1
∑𝑗𝑗≠𝑖𝑖 𝑓𝑓𝑗𝑗(𝜃𝜃𝑖𝑖)

• Implicit: 𝐹𝐹𝑖𝑖 𝜃𝜃𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝜃𝜃𝑖𝑖) (local model of 
FedAvg)
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Motivation
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• Difficulty to achieve explicitness
• 𝑂𝑂 𝑁𝑁2  communication overhead
• Proper coefficient for each non-local risk
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• Difficulty to achieve explicitness
• 𝑂𝑂 𝑁𝑁2  communication overhead
• Proper coefficient for each non-local risk

• Proposed solution: PGFed
 Estimate 𝑓𝑓𝑗𝑗 𝜃𝜃𝑖𝑖 ≈ 𝑓𝑓𝑗𝑗 𝜃𝜃𝑗𝑗 + ∇𝑓𝑓𝑗𝑗 𝜃𝜃𝑗𝑗

𝑇𝑇 𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗 , 𝑂𝑂 𝑁𝑁2 → 𝑂𝑂(𝑁𝑁)
 Use adaptive coefficient 𝛼𝛼𝑖𝑖𝑖𝑖∀𝑖𝑖, 𝑗𝑗 ∈ [𝑁𝑁]
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Method
• Objectives of Personalized Global Federated Learning (PGFed)

• Global objective:

• Local objective:

• Plugging 𝑓𝑓𝑗𝑗 𝜃𝜃𝑖𝑖 ≈ 𝑓𝑓𝑗𝑗 𝜃𝜃𝑗𝑗 + ∇𝑓𝑓𝑗𝑗 𝜃𝜃𝑗𝑗
𝑇𝑇(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗) into Local objective, we have
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Method
• Gradient-based update

• W.r.t 𝜃𝜃𝑖𝑖:

• �𝑔𝑔[𝑁𝑁] can be computed by the server with:
• Client 𝑖𝑖 uploading 𝛼𝛼𝑖𝑖
• Client 𝑗𝑗 uploading local gradient
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Method
• Gradient-based update

• W.r.t 𝛼𝛼𝑖𝑖𝑖𝑖:

• 𝑔𝑔𝛼𝛼
(1) (a scalar) can be computed and uploaded by the client 𝑗𝑗

• 𝑔𝑔𝛼𝛼
(2)  (exact value needs to transmit all gradients to client 𝑖𝑖 (takes 𝑂𝑂(𝑁𝑁2) comm.))

• Estimate:

• Client 𝑗𝑗 uploading local gradient
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Method
• To accommodate to 𝑀𝑀 selected clients per round: 

𝑁𝑁 → 𝑆𝑆𝑡𝑡 (selected set of clients in round 𝑡𝑡)

• To keep information from clients selected in 
previous round, use momentum (PGFedMo)
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• Settings
• Datasets: CIFAR10, CIFAR100, OrganAMNIST, Office-home
• Heterogeneity: Dir 𝛼𝛼 = 0.3, 1.0
• Number of clients: 20, 25, 50, 100 clients

Experiments & results
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Main takeaways:
 PGFed and PGFedMo boost the 

accuracy by up to 15.47%.
 PGFed and PGFedMo have 3.7× 

average speedup with highest 
individual gain.

 Global models of PGFed and 
PGFedMo have highest 
generailizability on new clients.

• Metrics
• Mean local test accuracy
• Mean individual gain over Local 
• #Rounds to reach 70% acc. & speedup
• Accuracy of fine-tuning resulting global 

model on new clients
• Throughput
• Etc. (see full paper)



More experiments & results
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More details in full paper…
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