

University of Pittsburgh

UNIVERSITY OF CENTRAL FLORIDA

Motivation & Objective

Federated prompt learning leverages CLIP-like Vision-Language Models' (VLMs') robust representation learning for federated learning (FL), but lacks personalization and restricts clients to a single aggregated global model under data heterogeneity, failing to exploit the lightweight nature of prompts.

Issues with the traditional approaches:

- ✓ Ill-suited restriction for sharing only aggregated prompt
- ✓ Limited knowledge sharing across clients
- ✓ Inability to leverage multiple prompt experts locally

Model parameter counts

Propose a paradigm shift in personalized federated prompt learning:

Personalized federated prompt learning:

$$\min_{\boldsymbol{\theta}_1,\ldots,\boldsymbol{\theta}_N} F(\boldsymbol{\theta}_1,\ldots,\boldsymbol{\theta}_N) = \min_{\boldsymbol{\theta}_1,\ldots,\boldsymbol{\theta}_N} \sum_{i=1}^N p_i F_i(\boldsymbol{\theta}_i)$$

- Challenges conventional restriction on sharing a single global model
- Encourages sharing of pre-aggregated prompts Sharing only the prompts reduces
- communication overhead (ResNet50: ~25.6 M parameters vs. prompt: ~8K parameters)

Propose pFedMoAP (Personalized Federated) **Mixture of Adaptive Prompts)**

 Knowledge transfer through pre-aggregated prompts

- Attention-based gating network from Mixture of Experts (MoE) perspective
- ✓ Superior performance across 9 datasets under various federated settings

plane
car
dog
0 0
bird

S	er
Α	SS
\checkmark	R
\checkmark	Μ
\checkmark	Ea
	si
\checkmark	Fa
	d

Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models

Jun Luo[†], Chen Chen[‡], and Shandong Wu^{†*}

[†] Intelligent Systems Program, *Department of Radiology University of Pittsburgh, Pittsburgh, PA, USA (jul117@pitt.edu, wus3@upmc.edu)

Method

Novel Architecture: pFedMoAP

Locally updated prompts shared as specialized experts under the scope of Mixture of Experts (MoE).

Client-specific, parameter-efficient attention-based gating ✓ Fnables multi-source knowledge utilization

Prompt Learning for CLIP-like

$$logit^{(c)} = sim(f(\boldsymbol{x}), g(\boldsymbol{P}^{(c)}))$$

 $over(logit^{(c)})/\sigma)$
 $MoE(\boldsymbol{x}) = \sum_{i=1}^{N} G(\boldsymbol{x})_i \cdot E_i(\boldsymbol{x})$

$$p(\hat{y} = c | \boldsymbol{x}) = \frac{\exp(\log(C))/\tau}{\sum_{k=1}^{C} \exp(\log(C))/\tau}$$

Workflow of pFedMoAP at client i

rver-Maintained Pool of Prompts with KNN-Based Expert signment

Refreshes with new prompts after each round

1aintains diverse expert prompts from clients

ach client assigned K non-local experts based on prompt imilarity

acilitates knowledge sharing from clients with similar data listributions

 $\mathcal{P}_t = \mathcal{P}_{t-1} - \{\boldsymbol{P}_i^{t-1}\}_{i \in \mathcal{P}_{t-1} \cap \mathcal{S}_t} + \{\boldsymbol{P}_j^t\}_{j \in \mathcal{S}_t}$

Attention-Based Gating Network

Provides robustness to adaptive experts

Serves as enhanced linear probing with higher capacity Leverages CLIP's feature alignment through attention

mechanism

 \checkmark Remains agnostic to experts' ordering.

✓ Multi-head attention (MHA) with image features as query, text features as key & value

 $\boldsymbol{T}_{MOE}^{(c)} = G(\boldsymbol{I}_k, \boldsymbol{T}_L^{(c)}, \boldsymbol{T}_{NL}^{(c)} | \boldsymbol{\theta}_i) = \text{MHA}(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O$

Combined Logits Computation

 Balances mixed experts and local prompts contributions $\checkmark \lambda$ controls personalization vs. knowledge sharing

$$\forall c \in [C], \text{ logit}^{(c)} = \sin(\mathbf{I}_k, \mathbf{T}_{MoE}^{(c)}) + \lambda \cdot \sin(\mathbf{I}_k, \mathbf{T}_L^{(c)})$$

[‡]Center for Computer Vision Research University of Central Florida, Orlando, FL, USA (chen.chen@crcv.ucf.edu)

Experiments

Few-shot performance on CLIP under pathological non-IID setting **pFedMoAP outperforms other baselines across 5 datasets**

	Flowers102	OvfordPats	Food101	Caltech101	חדח
ZS CLIP	62.17±0.12	84.47±0.01	75.27±0.05	85.14±0.24	40.21±0.12
СоОр	70.14±0.76	83.21±1.30	70.43±2.42	87.37±0.44	44.23±0.63
PromptFL	72.80±1.14	90.79±0.61	77.31±1.64	89.70±1.99	54.11±0.22
PromptFL+FT	72.31±0.91	91.23±0.50	77.16±1.56	89.70±0.25	53.74±1.36
Prompt+FedPer	72.11±1.35	89.50±1.62	71.29±1.87	86.72±1.45	50.23±0.82
Prompt+FedProx	66.40±0.29	89.24±0.41	76.24±1.94	89.41±0.55	44.26±1.11
Prompt+FedAMP	69.10±0.13	80.21±0.44	74.48±1.71	87.31±1.60	47.16±0.92
pFedPrompt	86.46±0.15	91.84±0.41	92.26±1.34	96.54±1.31	77.14±0.09
FedOTP	96.23±0.44	98.82±0.11	92.73±0.15	97.02±0.36	87.64±0.70
pFedMoAP (λ=0.0)	97.61±0.11	94.83±0.65	86.71±0.15	95.71±0.37	85.64±0.34
pFedMoAP (λ=0.5)	98.41±0.04	99.06±0.09	93.39±0.09	97.95±0.07	89.13±0.54

 \succ CIFAR10 and CIFAR100 with label shift with (Dir($\alpha = 0.5$)) partition into 100 clients pFedMoAP outperforms baselines by introducing non-local experts to clients, effectively addressing label shifts

	CIFAR10	CIFAR100
ZS CLIP	53.46±0.21	32.68±0.00
СоОр	80.84±0.39	48.74±0.17
PromptFL	73.29±0.37	45.00±0.62
Prompt+FedProx	73.32±0.34	45.63±0.75
pFedMoAP	83.46±0.53	53.42±0.22

 \triangleright DomainNet with feature shift and label shift with Dir($\alpha = 0.3$) partition into 5 clients/domain ✓ pFedMoAP remains better than local training and FL with up to 5.94% accuracy boost

	Clipart	Infograph	Painting	Quickdraw	Real	Sketch	Average
ZS CLIP	9.18±0.62	10.03±0.16	9.93±0.51	10.25±0.40	9.90±1.30	9.54±1.13	9.81±0.30
СоОр	43.84±3.51	45.72±0.85	29.94±0.46	36.83±1.17	31.64±0.49	33.97±0.78	36.99±0.79
PromptFL	27.63±16.41	27.69±18.07	21.62±8.34	23.45±13.49	20.62±11.03	25.90±8.10	24.48±12.52
Prompt+FedProx	22.23±15.42	21.75±17.00	18.58±8.15	19.40±12.59	17.17±10.25	22.49±8.44	20.27±11.83
pFedMoAP	47.49±0.64	46.73±0.71	32.74±0.84	37.16±0.34	31.02±0.59	37.67±0.72	38.80±0.11

pFedMoAP pioneers sharing of pre-aggregated personalized prompts for federated VLM under the scope of MoE, achieving superior performance with extreme data heterogeneity.

Ablation study on the coefficient for the logits from local prompt, λ

NIH/NIC 1R01CA218405 ➢ NSF CICI: SIVD: 2115082 NSF/NIH 1R01EB032896

Bridges-2 by ACCESS program, NSF ACI- 2138259, 2138286, 2138307, 2137603, 2138296