

Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models

Jun Luo[†], Chen Chen[‡], and Shandong Wu[†]

[†] University of Pittsburgh, Pittsburgh, PA, USA [‡] University of Central Florida, Orlando, FL, USA

Vision-Language Models (VLMs) like CLIP with their robust representation learning capabilities, show ۲ promise for addressing data heterogeneity in federated learning.

ImageNet-A

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

[Figures from CLIP paper]

- Vision-Language Models (VLMs) like CLIP with their robust representation learning capabilities, show promise for addressing data heterogeneity in federated learning.
- Traditional fine-tuning of VLMs in federated settings is challenging due to high communication overhead, leading researchers to explore prompt learning as a more efficient adaptation technique.

- Vision-Language Models (VLMs) like CLIP with their robust representation learning capabilities, show promise for addressing data heterogeneity in federated learning.
- Traditional fine-tuning of VLMs in federated settings is challenging due to high communication overhead, leading researchers to explore prompt learning as a more efficient adaptation technique.
- Existing federated prompt learning works
 - Habitually fall into traditional FL paradigm where clients are restricted to downloading only a single globally aggregated model not fully leveraging the prompt's lightweight nature
 - Struggling to handle extreme data heterogeneity, lacking personalization strategies to handle

Research question: How can we devise a personalized federated learning framework, tailored for prompt learning in CLIP-like VLMs, while fully exploiting the lightweight nature of the prompts?

Research question: How can we devise a personalized federated learning framework, tailored for prompt learning in CLIP-like VLMs, while fully exploiting the lightweight nature of the prompts?

- Personalized Federated Mixture of Adaptive Prompts (pFedMoAP)
 - Allows download of multiple pre-aggregated prompts
 - Uses a Mixture of Experts approach to treat locally updated prompts as specialized experts
 - Implements a client-specific, attention-based gating network to generate enhanced text features

- Workflow
 - Server maintains a pool of prompts $\mathcal{P}_t = \mathcal{P}_{t-1} \{P_i^{t-1}\}_{i \in \mathcal{P}_{t-1} \cap \mathcal{S}_t} + \{P_j^t\}_{j \in \mathcal{S}_t}$

- Workflow
 - Server maintains a pool of prompts $\mathcal{P}_t = \mathcal{P}_{t-1} \{\mathbf{P}_i^{t-1}\}_{i \in \mathcal{P}_{t-1} \cap \mathcal{S}_t} + \{\mathbf{P}_j^t\}_{j \in \mathcal{S}_t}$
 - Each client $i \in S_t$ download K pre-aggregated (non-local) prompt
 - K-Nearest Neighbors (KNN) since most likely to have similar distribution
 - $Q_i = \{NL_j\}_{j=1}^K$: set of clients assigned to client *i*, with prompts $P_{NL_j}(NL = abbr. for non-local)$

• Workflow

- Server maintains a pool of prompts $\mathcal{P}_t = \mathcal{P}_{t-1} \{\mathbf{P}_i^{t-1}\}_{i \in \mathcal{P}_{t-1} \cap \mathcal{S}_t} + \{\mathbf{P}_j^t\}_{j \in \mathcal{S}_t}$
- Each client $i \in S_t$ download K pre-aggregated (non-local) prompt
 - K-Nearest Neighbors (KNN) since most likely to have similar distribution
 - $Q_i = \{NL_j\}_{j=1}^K$: set of clients assigned to client *i*, with prompts $P_{NL_j}(NL = abbr. for non-local)$
- Before local training, for once, client compute (fixed) text feature from non-local prompts $\forall c \in [C], \ T_{NL}^{(c)} \stackrel{\Delta}{=} \{T_{NL_j}^{(c)} | T_{NL_j}^{(c)} = g(P_{NL_j}^{(c)}), \ \forall NL_j \in Q_i\}$

Workflow

- Server maintains a pool of prompts $\mathcal{P}_t = \mathcal{P}_{t-1} \{P_i^{t-1}\}_{i \in \mathcal{P}_{t-1} \cap \mathcal{S}_t} + \{P_j^t\}_{j \in \mathcal{S}_t}$
- Each client $i \in S_t$ download K pre-aggregated (non-local) prompt
 - K-Nearest Neighbors (KNN) since most likely to have similar distribution
 - $Q_i = \{NL_j\}_{j=1}^K$: set of clients assigned to client *i*, with prompts $P_{NL_j}(NL = abbr. for non-local)$
- Before local training, for once, client compute (fixed) text feature from non-local prompts $\forall c \in [C], \ T_{NL}^{(c)} \triangleq \{T_{NL_j}^{(c)} | T_{NL_j}^{(c)} = g(P_{NL_j}^{(c)}), \ \forall NL_j \in Q_i\}$
- Gating (detailed in following slides)
 - Input type (1): image feature $I_k = f(x_k)$
 - Input type 2: text feature from local prompt $T_L^{(c)} = g(P_i^{(c)})$
 - Input type (3): text features from non-local prompts $T_{NL}^{(c)}$
 - Output: MoE text feature $\forall c \in [C], T_{MoE}^{(c)} \stackrel{\Delta}{=} G(I_k, T_L^{(c)}, T_{NL}^{(c)} | \theta_i)$

Workflow

- Server maintains a pool of prompts $\mathcal{P}_t = \mathcal{P}_{t-1} \{P_i^{t-1}\}_{i \in \mathcal{P}_{t-1} \cap \mathcal{S}_t} + \{P_j^t\}_{j \in \mathcal{S}_t}$
- Each client $i \in S_t$ download K pre-aggregated (non-local) prompt
 - K-Nearest Neighbors (KNN) since most likely to have similar distribution
 - $Q_i = \{NL_j\}_{j=1}^K$: set of clients assigned to client *i*, with prompts $P_{NL_j}(NL = abbr. for non-local)$
- Before local training, for once, client compute (fixed) text feature from non-local prompts $\forall c \in [C], \ T_{NL}^{(c)} \triangleq \{T_{NL_j}^{(c)} | T_{NL_j}^{(c)} = g(P_{NL_j}^{(c)}), \ \forall NL_j \in Q_i\}$
- Gating (detailed in following slides)
 - Input type ①: image feature $I_k = f(x_k)$
 - Input type 2: text feature from local prompt $T_L^{(c)} = g(P_i^{(c)})$
 - Input type (3): text features from non-local prompts $T_{NL}^{(c)}$
 - Output: MoE text feature $\forall c \in [C], T_{MoE}^{(c)} \stackrel{\Delta}{=} G(I_k, T_L^{(c)}, T_{NL}^{(c)} | \theta_i)$
- Final step: compute logits, manually address local prompt since it is the only locally learnable prompt $\forall c \in [C], \ \text{logit}^{(c)} = \sin(I_k, T_{MoE}^{(c)}) + \lambda \cdot \sin(I_k, T_L^{(c)})$

• Attention-based gating network: mechanism

- Multi-head attention
- Pooling on features to reduce the size of gating from 1024 to 128
- Q=Pooling(I_k), K=V=Pooling{ $T_L^{(c)}, T_{NL_1}^{(c)}, T_{NL_2}^{(c)}, ..., T_{NL_K}^{(c)}$ }
- MoE text feature: $T_{MoE}^{(c)} = G(I_k, T_L^{(c)}, T_{NL}^{(c)} | \theta_i) = MHA(Q, K, V) = Concat(head_1, ..., head_h)W^O$ head_q = Attention(QW_q^Q, KW_q^K, VW_q^V)

- Attention-based gating network: design rationale against traditional projection-based gating network
 - Projection-based gating network $G_{ ext{proj}}(oldsymbol{x}_k) \in \mathbb{R}^{K+1}$

$$MoE(\boldsymbol{x}) = \sum_{i=1}^{N} G(\boldsymbol{x})_i \cdot E_i(\boldsymbol{x})$$

- Attention-based gating against projection-based gating
 - is more robust to adaptive experts
 - is agnostic to experts' order
 - serves as linear probing with more capacity
 - leverages CLIP's feature alignment with attention mechanism

• Algorithm

Algorithm 4 pFedMoAP

Input: N clients, learning rates η_1, η_2 , number of rounds T, logit coefficient λ , CLIP image/text encoder $f(\cdot), g(\cdot), g(\cdot)$

datasets $\{D_i\}_{i \in [N]}$

Output: Personalized prompts $P_1, P_2, ..., P_N$, gating network weights $\theta_1, \theta_2, ..., \theta_N$.

ServerExecute:

1: Server initialize 1	P_a^0 and the po	ool of prompt	experts \mathcal{P}_0 a	s an empty set
-------------------------------	--------------------	---------------	---------------------------	----------------

- 2: Clients intialize $\theta_1, \theta_2, ..., \theta_N$.
- 3: for $t \leftarrow 1, 2, ..., T$ do
- 4: Select a subset of $|\mathcal{S}_t|$ clients, \mathcal{S}_t
- 5: for $i \in S_t$ in parallel do
- 6: **if** Client *i* does not have an entry in the server-maintained pool, \mathcal{P}_t **then**
- 7: $P_i^t = \text{ClientUpdate}(P_q^{t-1}, \text{standard}=\text{True})$
- 8: else
- 9: Compute Q_i by K nearest neighbor, given $P_i^t = \mathcal{P}_{t-1}[i]$.
- 10: $P_{NL} = \{\mathcal{P}_{t-1}[j]\}_{j \in Q_i} // \text{ prompt in the pool from selected group of clients}$
- 11: $P_i^t = \text{ClientUpdate}(P_g^{t-1}, P_{NL}) // \text{downloaded as non-local experts}$
- 12: $\mathcal{P}_t[i] = P_i^t // \text{ cache to pool}$
- 13: **end if**
- 14: $P_g^t = \sum_{i \in \mathcal{S}_t} p_i P_i^t$
- 15: end for

16: end for

17: return $P_1^T, P_2^T, ..., P_N^T$ and $\theta_1, \theta_2, ..., \theta_N$

ClientUpdate(P_a^{t-1} , P_{NL} =None, standard=False): 1: $P_i^t \leftarrow P_q$ 2: if standard then client does a standard fine-tuning 3: 4: else 5: for $(x_k, y_k) \in D_i$ do $T_L = g(\boldsymbol{P}_i^t)$ 6: $T_{NL} = g(P_{NL})$ 7: $\boldsymbol{I}_k = f(\boldsymbol{x}_k)$ 8: $T_{MoE} = G(I_k, T_L, T_{NL} | \theta_i)$ 9: $logit = sim(I_k, T_{MoE}) + \lambda \cdot sim(I_k, T_L)$ 10: $p(\hat{y} = c | x_k) = \text{Softmax}(\text{logit}, \tau) // \tau$ is the temperature 11: $\mathcal{L}_{ce} = -\sum_{c} y_k^{(c)} p(\hat{y} = c | \boldsymbol{x}_k)$ 12: 13: end for 14: end if 15: return P_i^t

pFedMoAP – Experiments & results

• Datasets

Dataset	Training Set Size	Test Set Size	Number of Classes	Number of Clients	Sample Rate	Data Heterogeneity
Flowers102	4,093	2,463	102	10	100%	Pathological non-IID
OxfordPets	2,944	3,669	37	10	100%	Pathological non-IID
Food101	50,500	30,300	101	10	100%	Pathological non-IID
Caltech101	4,128	2,465	100	10	100%	Pathological non-IID
DTD	2,820	1,692	47	10	100%	Pathological non-IID
Office-Caltech10	2,025	508	10	20	50%	Dir(0.3)
DomainNet	18,278	4,573	10	30	25%	Dir(0.3)
CIFAR10	50,000	10,000	10	100	10%	Dir(0.5)
CIFAR100	50,000	10,000	100	100	10%	Dir(0.5)

CLIP datasets, pathological label shift
 Domain adaptation datasets, feature + label shift
 CIFAR 10/100, Practical label shift

- Compared methods
 - Local methods
 - Zero-shot CLIP
 - CoOp (prompt learning)
 - Federated prompt learning + FL/PFL
 - PromptFL
 - PromptFL + FedProx
 - PromptFL + FT
 - PromptFL + FedAMP
 - PromptFL + FedPer
 - Personalization designed for federated prompt learning
 - pFedPrompt
 - FedOTP

pFedMoAP – Experiments & results

• Main results with different data shift and heterogeneity

Label shift

	Flowers102	OxfordPets	Food101	Caltech101	DTD
ZS-CLIP [71]	62.17±0.12	84.47±0.01	75.27±0.05	85.14±0.24	40.21±0.12
CoOp [100]	$70.14{\pm}0.76$	83.21±1.30	$70.43 {\pm} 2.42$	87.37±0.44	44.23±0.63
PromptFL [31]	$72.80{\pm}1.14$	$90.79 {\pm} 0.61$	77.31±1.64	89.70±1.99	54.11±0.22
PromptFL+FT [12]	72.31±0.91	$91.23{\pm}0.50$	77.16±1.56	$89.70{\pm}0.25$	53.74±1.36
PromptFL+FedPer[5]	72.11±1.35	$89.50{\pm}1.62$	$71.29{\pm}1.87$	$86.72{\pm}1.45$	$50.23{\pm}0.82$
PromptFL+FedProx [50]	$66.40 {\pm} 0.29$	$89.24{\pm}0.41$	76.24±1.94	89.41±0.55	44.26±1.11
PromptFL+FedAMP [37]	69.10±0.13	$80.21 {\pm} 0.44$	$74.48{\pm}1.71$	87.31±1.60	47.16±0.92
pFedPrompt [30]	$86.46 {\pm} 0.15$	$91.84{\pm}0.41$	92.26±1.34	96.54±1.31	$77.14 {\pm} 0.09$
FedOTP [48]	$96.23 {\pm} 0.44$	$98.82{\pm}0.11$	$92.73{\pm}0.15$	$97.02 {\pm} 0.36$	87.64±0.70
pFedMoAP (λ =0.0)	97.61±0.11	94.83±0.65	86.71±0.15	95.71±0.37	85.64±0.34
pFedMoAP (λ =0.5)	98.41±0.04	99.06±0.09	93.39±0.09	97.95±0.07	89.13±0.54

	CIFAR10	CIFAR10
ZS CLIP (Radford et al., 2021)	$53.46 {\pm} 0.21$	32.68 ± 0.00
CoOp (Zhou et al., 2022b)	$80.84 {\pm} 0.39$	$48.74 {\pm} 0.17$
PromptFL (Guo et al., 2023b)	73.29 ± 0.37	45.00 ± 0.62
Prompt+FedProx (Li et al., 2020b)	73.32 ± 0.34	45.63±0.75
pFedMoAP	$83.46 {\pm} 0.53$	53.42±0.22

Feature shift

	Clipart	Infograph	Painting	Quickdra	aw Real	Sketch	Average
ZS CLIP	9.18±0.62	10.03 ± 0.16	9.93 ± 0.51	10.25±0	.40 9.90±1.3	30 9.54±1.13	9.81±0.30
СоОр	43.84±3.51	45.72 ± 0.85	$29.94{\pm}0.46$	36.83±1	.17 31.64±0	.49 33.97±0.7	8 36.99±0.79
PromptFL	27.63±16.41	27.69 ± 18.07	21.62 ± 8.34	23.45 ± 1	3.49 20.62±1	1.03 25.90±8.1	$0 24.48 \pm 12.52$
Prompt+FedProx	22.23±15.42	21.75 ± 17.00	18.58 ± 8.15	19.40 ± 1	2.59 17.17±1	$0.25 \ 22.49 \pm 8.4$	4 20.27±11.83
pFedMoAP	47.49±0.64	46.73±0.71	32.74±0.84	37.16±0	.34 31.02±0	.59 37.67±0.7	2 38.80 ± 0.11
		Ama	zon Ca	ltech	DSLR	Webcam	Average
ZS-CLIP (Radford	et al., 2021)	9.83±	1.63 10.6	7 ± 0.89	10.89 ± 1.40	6.20 ± 3.84	9.40±0.77
CoOp (Zhou et al., 2	2022b)	30.29	±3.64 35.8	8 ± 1.30	29.89 ± 5.15	33.43 ± 2.25	32.37 ± 1.81
PromptFL (Guo et	al., 2023b)	21.08	±9.60 23.7	2 ± 12.21	$22.94{\pm}7.96$	25.88 ± 7.72	23.41 ± 9.06
Prompt+FedProx	(Li et al., 202	0b) 18.64	±8.58 19.5	6±11.59	$20.89 {\pm} 7.38$	22.96 ± 7.56	20.51 ± 8.48
pFedMoAP		35.47	±1.37 37.4	5±1.33	45.11±3.14	35.22±1.04	38.31±1.21

non-local !

non-local 1

pFedMoAP – Experiments & results

Differential privacy and visualization of MoE feature contributions ullet

Table 6: Performance under (ϵ, δ) -differe	ntial privacy on CLIF	P datasets under path	nological non-IID
setting.			

	Flowers102	OxfordPets	Food101	Caltech101	DTD
Without differential privacy (from Tab. 1) PromptFL (Guo et al., 2023b) PromptFL+FedProx (Li et al., 2020b) pFedMoAP(ours)	72.80±1.14 66.40±0.29 98.41±0.04	90.79±0.61 89.24±0.41 99.06±0.09	77.31±1.64 76.24±1.94 93.39±0.09	89.70±1.99 89.41±0.55 97.95±0.07	54.11±0.22 44.26±1.11 89.13±0.54
With differential privacy ($\epsilon = 50$) PromptFL (Guo et al., 2023b) PromptFL+FedProx (Li et al., 2020b) pFedMoAP(ours)	67.07±0.60 66.22±0.63 98.34±0.06	88.05±0.32 87.78±0.61 99.08±0.02	77.41±0.60 77.27±0.59 93.36±0.04	84.83±0.42 84.68±0.64 97.90±0.08	38.39±1.25 39.43±1.11 89.99±0.49
With differential privacy ($\epsilon = 25$) PromptFL (Guo et al., 2023b) PromptFL+FedProx (Li et al., 2020b) pFedMoAP(ours)	64.25±1.10 62.87±0.99 98.36±0.12	86.26±1.07 86.82±0.47 99.02±0.04	76.84±0.66 76.21±0.64 93.41±0.13	85.00±1.59 84.51±1.52 97.99±0.06	38.19±0.66 37.82±0.52 89.11±0.28

Figure 6: Contribution of the experts based on averaged attention score across all test images. The first five charts are for CLIP datasets, for which there are 10 clients in each dataset. The last chart is for DomainNet with a total of 30 clients.

pFedMoAP – Experiments & results

• Ablation studies

Figure 3: Ablation study on the number of shots.

Figure 4: Ablation study on the coefficient for the logits from local prompt, λ .

Figure 5: The impact of the number of experts on CIFAR10 with 100 clients

30

35

40

[More experiments in paper]

Acknowledgements

<u>Jun Luo</u>

n Dr. Shandong Wu

- ➢ NIH/NIC 1R01CA218405
- > NSF CICI: SIVD: 2115082
- ➢ NSF/NIH 1R01EB032896
- Bridges-2 by ACCESS program
- NSF ACI-2138259, 2138286,
 2138307, 2137603, 2138296

