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• Vision-Language Models (VLMs) like CLIP with their robust representation learning capabilities, show 
promise for addressing data heterogeneity in federated learning.

[Figures from CLIP paper]
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• Traditional fine-tuning of VLMs in federated settings is challenging due to high communication overhead, 
leading researchers to explore prompt learning as a more efficient adaptation technique.



• Vision-Language Models (VLMs) like CLIP with their robust representation learning capabilities, show 
promise for addressing data heterogeneity in federated learning.

• Traditional fine-tuning of VLMs in federated settings is challenging due to high communication overhead, 
leading researchers to explore prompt learning as a more efficient adaptation technique.

• Existing federated prompt learning works
• Habitually fall into traditional FL paradigm where clients are restricted to downloading only a single globally 

aggregated model – not fully leveraging the prompt’s lightweight nature
• Struggling to handle extreme data heterogeneity, lacking personalization strategies to handle 
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Research question: How can we devise a personalized federated 
learning framework, tailored for prompt learning in CLIP-like VLMs, 
while fully exploiting the lightweight nature of the prompts?



• Personalized Federated Mixture of Adaptive Prompts 
(pFedMoAP)

• Allows download of multiple pre-aggregated prompts
• Uses a Mixture of Experts approach to treat locally 

updated prompts as specialized experts
• Implements a client-specific, attention-based gating 

network to generate enhanced text features
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• Workflow
• Server maintains a pool of prompts
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𝒬𝒬1

𝒬𝒬2
𝒬𝒬3• Workflow

• Server maintains a pool of prompts
• Each client 𝑖𝑖 ∈ 𝑆𝑆𝑡𝑡 download 𝐾𝐾 pre-aggregated (non-local) prompt

• K-Nearest Neighbors (KNN) since most likely to have similar distribution
•                            : set of clients assigned to client 𝑖𝑖, with prompts 𝑃𝑃𝑁𝑁𝐿𝐿𝑗𝑗(𝑁𝑁𝑁𝑁= 

abbr. for non-local)
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• Gating (detailed in following slides)
• Input type ①: image feature 
• Input type ②: text feature from local prompt
• Input type ③: text features from non-local prompts
• Output: MoE text feature
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• Workflow
• Server maintains a pool of prompts
• Each client 𝑖𝑖 ∈ 𝑆𝑆𝑡𝑡 download 𝐾𝐾 pre-aggregated (non-local) prompt

• K-Nearest Neighbors (KNN) since most likely to have similar distribution
•                            : set of clients assigned to client 𝑖𝑖, with prompts 𝑃𝑃𝑁𝑁𝐿𝐿𝑗𝑗(𝑁𝑁𝑁𝑁= 

abbr. for non-local)
• Before local training, for once, client compute (fixed) text feature from 

non-local prompts

• Gating (detailed in following slides)
• Input type ①: image feature 
• Input type ②: text feature from local prompt
• Input type ③: text features from non-local prompts
• Output: MoE text feature

• Final step: compute logits, manually address local prompt since it is the 
only locally learnable prompt
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• Attention-based gating network: mechanism

• Multi-head attention
• Pooling on features to reduce the size of gating from 1024 to 128
• Q=Pooling(     ), K=V=Pooling{                                         }
• MoE text feature:
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• Attention-based gating network: design rationale against 
traditional projection-based gating network

• Projection-based gating network 

• Attention-based gating against projection-based gating
• is more robust to adaptive experts
• is agnostic to experts' order
• serves as linear probing with more capacity
• leverages CLIP's feature alignment with attention mechanism
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• Algorithm



• Datasets
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pFedMoAP – Experiments & results

①

③

②

① CLIP datasets, pathological label shift
② Domain adaptation datasets, feature + label shift
③ CIFAR 10/100, Practical label shift

• Compared methods
• Local methods

• Zero-shot CLIP
• CoOp (prompt learning)

• Federated prompt learning + FL/PFL
• PromptFL
• PromptFL + FedProx
• PromptFL + FT
• PromptFL + FedAMP
• PromptFL + FedPer

• Personalization designed for 
federated prompt learning

• pFedPrompt
• FedOTP



• Main results with different data shift and heterogeneity
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pFedMoAP – Experiments & results

Label shift
Feature shift



• Differential privacy and visualization of MoE feature contributions 
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pFedMoAP – Experiments & results



• Ablation studies
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pFedMoAP – Experiments & results

[More experiments in paper]
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