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Motivation & Objective Method Experiments
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, IShag![Tg acrloss clients ¢, » CIFAR10 and CIFAR100 with label shift with (Dir(a = 0.5)) partition into 100 clients
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» DomainNet with feature shift and label shift with Dir(a = 0.3) partition into 5 clients/domain

» Server-Maintained Pool of Prompts with KNN-Based Expert v’ pFedMoAP remains better than local training and FL with up to 5.94% accuracy boost
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