

www.junluo.me

■ Ijaiverson365@gmail.com

in linkedin.com/in/junluo1 Google Scholar San José, California

Pittsburgh, PA

Los Angeles, CA

Wuhan, China

Berkeley, CA

Aug., 2019 - Present

Aug., 2017 - May, 2019

Sep., 2013 - Jun., 2017

Aug., 2016 - Dec., 2016

EDUCATION

University of Pittsburgh

Ph.D. in Intelligent Systems (in progress)

University of Southern California

M.S. in Electrical Engineering (Honors Fellow), GPA: 3.92/4.0

Huazhong University of Science and Technology

B.E. in Electrical Engineering and Automation, GPA: 3.72/4.0

University of California, Berkeley

Exchange program with selective admission: Berkeley International Study Program

Advanced Topics in Machine Learning, Found. of Al, Computer Vision, LLM Engineering, Intro. to NLP, Learning-Based Image Synthesis, Optimization, Mathematical Pattern Recognition, Time Series, ML with Large Datasets, Applied Statistical Methods

EXPERIENCES

Sony AI, Privacy-Preserving Machine Learning Team

Research Intern, mentored by Dr. Weiming Zhuang and Dr. Chen Chen

Efficiently leveraging foundation models in federated learning

Tokyo, Japan (remote in US)

May, 2023 - Jul., 2023

- Led research that empowers heterogeneous resource-constrained devices with knowledge from foundation models.
- Proposed a knowledge distillation-based communication- and computation-efficient personalized federated learning algorithm, leveraging large foundation models for clients with limited and heterogeneous resources.
- Implemented the proposed idea for Sony Al's federated learning framework and composed related documentation.

University of Pittsburgh, ICCI Lab

Pittsburgh, PA

May, 2020 - Present

Graduate Student Researcher, advised by Dr. Shandong Wu@Pitt and Dr. Chen Chen@UCF

Federated learning with Vision-Language Models and general deep learning models [Project page]

 Proposed federated learning and its personalization algorithms under the scopes of Mixture of Experts (MoE), Vision-Language Model (VLM), prompt tuning, first-order approximation, and adaptive personalization.

- Proposed algorithms achieve high performance, accelerated convergence, and reduced overhead (with up to 15.47%) accuracy increase, $4.2 \times$ convergence speed-up, one magnitude $(O(N^2) \to O(N))$ of overhead reduction over baselines).
- Related papers published in ICLR 2025, ICCV 2023 (including 1 oral, top 1.8 %), IJCAI 2022, and ISBI 2022.

Curriculum learning with domain knowledge for medical image classification [Project page]

- Proposed data level and task level curriculum learning strategies for multi-view cancer and fracture diagnoses.
- Collaborated with radiologists on designing domain knowledge-guided ML pipelines with boosted performance (up to 3.6% accuracy increase, 4.8% AUC increase, and 6.2% F1 score increase over baselines on medical datasets).
- Related papers published in ISBI 2023, SPIE Medical Imaging 2022 & 2021, MICCAI-W 2021, and ARRS 2021.

University of Pittsburgh, Dr. Hauskrecht's Lab

Pittsburgh, PA

Graduate Student Researcher, advised by Dr. Milos Hauskrecht@Pitt

Jan., 2020 - Apr., 2020

Time series modeling of Ordinary Differential Equation (ODE) -based biomedical system [Project page]

- Developed an ODE-based generative model for time series data synthesis for wound healing inflammation process.
- Adopted Markov chain Monte Carlo (MCMC) for ODE coefficients posterior estimation from synthesized data.
- Built a Seq2Seq model with LSTM to predict the future time series trajectories of the biomedical signals.

University of North Carolina at Charlotte, Computer Vision Lab

Charlotte, NC

Research Intern, advised by Dr. Chen Chen@UCF

Jul., 2018 - Dec., 2018

Video anomaly detection pipeline development for the elderly [Project page]

- Fine-tuned Inflated 3D ConvNet (I3D) on fall detection video datasets and post-processed the results with YOLO-V3.
- o Employed OpenPose and Spatial-Temporal Graph ConvNet (GCN) for fall detection from pose estimation in videos.

SELECTED PUBLICATIONS

o Luo, J., Chen, C., & Wu, S. "Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models". In Proceedings of the International Conference on Learning Representations (ICLR), 2025. [PDF]

- <u>Luo, J.</u>, Mendieta, M., Chen, C., & Wu, S. "PGFed: Personalize Each Client's Global Objective for Federated Learning". In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023. (Oral, top 1.8%) [PDF]
- Sun, G., Mendieta, M., <u>Luo, J.</u>, Wu. S., & Chen. C. "FedPerfix: Towards Partial Model Personalization of Vision Transformers in Federated Learning". In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023. [PDF]
- <u>Luo, J.</u>, Arefan, D., Vasireddi, A., Wu, S., and Nguyen, N. "Potential Use of Artificial Intelligence in Sincalide-Stimulated Cholescintigraphy: A Pilot Study". In *Journal of Nuclear Medicine (JNM)*, P1119-P1119, 2023. [URL]
- O Zhou, Z., Luo, J., Arefan, D., and Kitamura, G., & Wu, S. "Human Not in the Loop: Objective Sample Difficulty Measures for Curriculum Learning". In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1-5. IEEE, 2023. (Oral) [PDF]
- <u>Luo, J.</u>, & Wu, S. "Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning". In Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI), 2022. (Acceptance rate: 14.9%) [PDF]
- <u>Luo, J.</u>, & Wu, S. "FedSLD: Federated Learning with Shared Label Distribution for Medical Image Classification". In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1-5. IEEE, 2022. (Oral) [PDF]
- <u>Luo, J.</u>, Arefan, D., Zuley, M., Sumkin, J., & Wu, S. "Deep Curriculum Learning in Task Space for Multi-Class Based Mammography Diagnosis". In *Medical Imaging 2022: Computer-Aided Diagnosis (Vol. 12033, p. 71-76). International Society for Optics and Photonics (SPIE), 2022. (Oral) [PDF]*
- <u>Luo, J.</u>, Kitamura, G., Arefan, D., Doganay, E., Panigrahy, A., & Wu, S. "Knowledge-Guided Multiview Deep Curriculum Learning for Elbow Fracture Classification". In MICCAI 2021 Workshop on Machine Learning in Medical Imaging (MICCAI-w) (pp. 555-564). Springer, Cham, 2021. (Poster) [PDF]
- <u>Luo, J.</u>, Kitamura, G., Doganay, E., Arefan, D., & Wu, S. "Medical Knowledge-Guided Deep Curriculum Learning for Elbow Fracture Diagnosis from X-Ray Images". In Medical Imaging 2021: Computer-Aided Diagnosis (Vol. 11597, p. 1159712). International Society for Optics and Photonics (SPIE), 2021. (Oral) [PDF]

PROJECTS

LLM fine-tuning for Amazon item price prediction [GitHub]

Fall 2024

- O Curated and published [dataset], trained baseline regression models with bag of words and engineered features.
- o Full fine-tuned GPT-40 mini using OpenAl API, tracking loss and progress with wandb, and designed evaluation.
- O Parameter-efficient fine-tuning with QLoRA on Llama 3.1 8B, published [trained model weights] on hugging face.

LLM-based agentic AI for best deals finder from deals RSS [GitHub]

Fall 2024

- O Pipelined an agentic AI solution that pushes phone notifications for best deals with high-quality item descriptions.
- Designed a planner agent that sequentially calls an LLM-based scanner agent to acquire high-quality deals from RSS, an ensemble agent to estimate the discount, and a messenger agent to push cell phone notifications for the best deals.
- Implemented the ensemble price predictor agent with RAG empowered GPT-40 mini (Chroma knowledge base of SentenceTransformer features), fine-tuned Llama 3.1 deployed on cloud (Modal), and locally trained Random Forest.
- O Designed advanced UI with Gradio integration of details for cached deals and real-time log visualization.

Deblurring ultra-low dose radiation dental CT images with pix2pix [GitHub]

Fall 2021

- Applied pix2pix to enhance and deblur the collected ultra-low dose radiation dental CT image data, acquired radiologist
 -qualified better sharpness, suggesting potential reduction of radiation exposure while maintaining diagnostic quality.
- Results has been published in AAOMR Annual Session, 2021, as a clinical abstract for oral presentation. [PDF] [Slides]

Spatio-temporal interpolation in fluid dynamics [GitHub]

Spring 2019

- Collaborated with domain experts on fluid dynamics data (synthesized with Mantaflow) spatio interpolation with Super Resolution CNN and Super Resolution GAN, and temporal interpolation with SuperSloMo.
- Implemented vanilla and upgraded SRCNN, [poster] was awarded deep learning course Best Poster Runner-up.

HONORS AND AWARDS

- 2024 Provost Fellowship of University of Pittsburgh
- 2023 Intelligent Systems Program Travel Grant Award
- 2021 Intelligent Systems Program Fellowship
- 2020 Intelligent Systems Program Fellowship
- 2019 Master of Science Honors Fellow graduate
- 2018 Top 10% of Kaggle TGS Salt segmentation Challenge
- 2016 First place (university-wise) in Neoway electronic contest

SKILLS

Programming: Python (PyTorch, TensorFlow, Keras, Pandas), Java, C/C++, SQL, R, MATLAB, JavaScript, HTML/CSS

o Tools: Git, Anaconda, Hugging Face, Chroma, LangChain, Wandb, Gradio, Node.js, React.js, Visual Studio, IntelliJ

Cloud: AWS (EC2, S3, EMR), GCP (Deep Learning VM), Spark, Hadoop, Databricks, Docker, Kubernetes, Modal