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• Federated learning: introduction

• Federated Learning with Shared Label Distribution for Medical Image Classification (FedSLD)

• Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning (APPLE)

• PGFed: Personalize Each Client’s Global Objective for Federated Learning (PGFed)

• Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models (pFedMoAP)

• Case Study: Personalized, Real-World, and Cross-Silo Federated Learning for Breast Cancer Detection

• Summary

Overview
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• Basic mechanism of traditional FL
• Broadcast
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• Client (local) training
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 FedAvg: 𝑤 = σ𝑖 𝑝𝑖𝑤𝑖
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• Basic mechanism of traditional FL
• Broadcast
• Client (local) training
• Server (global) aggregation
 FedAvg: 𝑤 = σ𝑖 𝑝𝑖𝑤𝑖
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If #clients is large, sample clients at the 
beginning of each round

Federated learning: introduction



• Applications of FL
• Cross-silo FL

• Medical centers
• Financial institutes

• Cross-device FL
• Smart phone/IoT devices
• Smart vehicle
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• Applications of FL
• Cross-silo FL

• Medical centers
• Financial institutes

• Cross-device FL
• Smart phone/IoT devices
• Smart vehicle

• One of the earliest successes of FL: Gboard
• “Hey Siri” from Apple, “Alexa” from Amazon…
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“Hey Siri” “Alexa”
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• Data heterogeneity and personalized FL (PFL)
• Data heterogeneity – non-IID

• E.g. medical datasets are often non-IID
• Different data acquisition protocols
• Different local demographics
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• Data heterogeneity and personalized FL (PFL)
• Data heterogeneity – non-IID

• E.g. medical datasets are often non-IID
• Different data acquisition protocols
• Different local demographics

• Traditional (global) FL
• Trains a single global consensus model
• Issues caused by data heterogeneity

• inferior performance
• slower convergence
• Loss of clients’ incentives to participate in FL

• Personalized FL (PFL)
• Allows customized models for different clients
• Systemically mitigates data heterogeneity issue
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• FedAvg assumption
• Weighted sum of local empirical risks
• Weights are often 𝑛𝑖/ σ𝑗 𝑛𝑗

• Assumes knowledge of number of samples

FedSLD – Background and motivation

𝑛1,𝑐

Client 1

𝑛𝑁,𝑐

Client 𝑁

. . .
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Research question 1: How can we leverage other sharable information to design a 
novel global FL algorithm for medical FL to mitigate the data heterogeneity issue?



• FedAvg assumption
• Weighted sum of local empirical risks
• Weights are often 𝑛𝑖/ σ𝑗 𝑛𝑗

• Assumes knowledge of number of samples

• Federated Learning with Shared Label Distribution (FedSLD)
• Leverages information and statistics regarding the local datasets
• Assumes knowing number of samples in each class

• This assumption usually holds true for medical cross-silo FL
• Estimate of label distribution

FedSLD – Background and motivation

𝑛1,𝑐

Client 1

𝑛𝑁,𝑐

Client 𝑁

. . .
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• Estimation of label distribution

• Non-IID: 𝒫𝑖 𝑥, 𝑦 ≠ 𝒫𝑗 𝑥, 𝑦

• By Bayes’ theorem, 𝒫𝑖 𝑥 𝑦 𝒫𝑖 𝑦 ≠ 𝒫𝑗 𝑥 𝑦 𝒫𝑗(𝑦)

• Here, we only consider different 𝒫𝑖 𝑦 ≠ 𝒫𝑗(𝑦)

• Aggregate knowledge of #samples in each class, estimate 𝒫 𝑦  
by

෨𝒫 𝑦 = 𝑐 =
σ𝑖=1

𝑁 𝑛𝑖,𝑐

σ𝑖=1
𝑁 𝑛𝑖

FedSLD – Method

𝑛1,𝑐

Client 1

𝑛𝑁,𝑐

Client 𝑁

. . .
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• Compute the percentage of each class in each mini-batch

• During local update, given a batch of data 𝑥𝑘 , 𝑦𝑘 𝑘=1
𝐵  with 𝐵 

data samples, compute

𝑝𝑏 𝑦 = 𝑐 =
σ𝑘=1

𝐵 𝑦𝑘 = 𝑐

𝐵

FedSLD – Method

𝐵

20%      50%       30%
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• Weigh each data samples’ contribution to the loss 
based on
• The estimation of the prior of each class
• The percentage of each class in each mini-batch

• Final loss of the mini-batch

ℒ𝑏 𝑥𝑘 , 𝑦𝑘 𝑘=1
𝐵 = − ෍

𝑘=1

𝐵
෨𝒫(𝑦 = 𝑦𝑘)

𝑝𝑏(𝑦 = 𝑦𝑘)
⋅ ෍

𝑐=1

𝐶

𝑦𝑘,𝑐 log 𝑓𝑖 𝑥𝑘 𝑐

• Aggregate the model at the end of each training 
round as in FedAvg

FedSLD – Method
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• Datasets

• Two benchmark datasets
• MNIST
• CIFAR10

• Two medical imaging datasets from MedMNIST  
collection
• OrganMNIST (axial) (11-class liver tumor images)
• PathMNIST (9-class colorectal cancer images)

FedSLD – Experiments & results

PathMNIST                 OraganMNIST (axial)
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• Two non-IID settings

• Pathological non-IID (12 clients)
• Randomly select 2 classes for each client
• In each class, assign a random number of images

• Practical non-IID (12 clients)
• Randomly partition each class of the dataset into 12 shards 

(10 x 1%, 1 x 10%, 1 x 80%)
• Randomly assign one shard from each class to each client
• A simulation that is closer to real-world medical applications

• Compared baselines
• FedAvg
• FedProx

30
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BMCTA/BTA MNIST CIFAR10
Organ-
MNIST

Path-
MNIST

FedAvg 93.41/94.15 32.07/35.46 82.32/85.69 52.70/57.38

FedProx 93.45/94.20 31.98/35.38 81.53/85.54 52.77/57.72

FedSLD 
(Ours)

95.56/95.85 37.48/37.79 84.75/84.75 53.87/57.90

• Practical non-IID results

32

Mean personalized acc. / Combined test set (global) acc.

FedSLD – Experiments & results



• Federated learning: introduction

• Federated Learning with Shared Label Distribution for Medical Image Classification (FedSLD)

• Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning (APPLE)

• PGFed: Personalize Each Client’s Global Objective for Federated Learning (PGFed)

• Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models (pFedMoAP)

• Case Study: Personalized, Real-World, and Cross-Silo Federated Learning for Breast Cancer Detection

• Summary

Overview
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• FedAvg aggregation
• 𝑤 = σ𝑖 𝑝𝑖𝑤𝑖

• 𝑝𝑖 = 𝑁𝑖/ σ𝑗 𝑁𝑗, aggregation weights are fixed

• Most existing FL/PFL methods
• Use FedAvg-like aggregation
• Training is either global or personalized

APPLE – Background and motivation

M1 M2
M3

Personalized (local) models

34

M 𝑤 = ෍

𝑖

𝑁𝑖

σ𝑗 𝑁𝑗
𝑤𝑖

Research question 2: How can we develop an adaptive aggregation 
strategy that optimally weighs different clients’ contributions for each 
participant, while maintaining a flexible balance between global 
collaboration and local personalization objectives in cross-silo 
federated learning?



Client 1

𝑝1,1              +𝑝1,2             +𝑝1,3𝑤1
(𝑐) 𝑤2

(𝑐)
𝑤3

(𝑐)

• Adaptive Personalized Cross-Silo Federated Learning 
(APPLE)

• The model of a client

• Personalized model 𝒘𝒊
(𝒑)

: used to do inference on client 𝑖

• Core model 𝒘𝒊
𝒄 : a constructing part of personalized model on 

client 𝑖, server also maintains core models from every client

• 𝑤𝑖
(𝑝)

= σ𝑗=1
𝑁 𝑝𝑖,𝑗𝑤𝑗

(𝑐)

• Directed relationship (DR) vector 𝒑𝒊: learnable weights 
(coefficients for core models) on client 𝑖, always kept locally

𝑤1
(𝑝)

=

35
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• Server
• Broadcast core models to 

each client at the beginning 
of each round

• Collect (updated) core models 
at the end of each round

APPLE – Method

Server

𝑤1
(𝑐)

𝑤2
(𝑐)

𝑤3
(𝑐)

Client 2                    𝑝2,1, 𝑝2,2, 𝑝2,3

𝑤1
(𝑐)

𝑤2
(𝑐)

𝑤3
(𝑐)

Client 1

𝑝1,1              +𝑝1,2             +𝑝1,3𝑤1
(𝑐) 𝑤2

(𝑐)
𝑤3

(𝑐)

Client 3                    𝑝3,1, 𝑝3,2, 𝑝3,3

𝑤1
(𝑐)

𝑤2
(𝑐)

𝑤3
(𝑐)

• Local training
• Clients’ own core models and 

DR vectors are updated

• 𝑤𝑖
(𝑐)

← 𝑤𝑖
(𝑐)

− 𝜂1
𝜕

𝜕𝑤𝑖
(𝑐) 𝐹𝑖(𝑤𝑖

(𝑝)
)

• 𝑝𝑖 ← 𝑝𝑖 − 𝜂2
𝜕

𝜕𝑝𝑖
𝐹𝑖(𝑤𝑖

(𝑝)
)
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• Proximal Directed Relationships
• Since downloaded core models are not trained from local empirical risk, training might be drawn 

to resembling individual learning (DR matrix drawn to identity matrix)
• Penalize DR vector by a proximal term

• 𝐹𝑖 𝑤𝑖
𝑝

=
1

𝑛𝑖
σ

𝜉∈𝐷𝑖
𝑡𝑟 ℒ 𝑤𝑖

𝑝
; 𝜉 + 𝜆 𝑟

𝜇

2
𝑝𝑖 − 𝑝0 2

2

• Prox-center 𝑝0 = [
𝑛1

𝑛
, … ,

𝑛𝑁

𝑛
]

• Loss scheduler 𝜆 𝑟 ∈ [0,1]: a decreasing function w.r.t. current round, controls the focus of 
training; 𝜇: the peak value of the proximal term coefficient

• Proximal term coefficient: ∞ → FedAvg; large → facilitate learning global high-level feature; 
small → concentrate on local empirical risk, learning the personalization

APPLE – Method
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APPLE – Method
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• Datasets
• MNIST
• CIFAR10
• OraganMNIST (axial)
• PathMNIST

• Two non-IID settings (same with FedSLD)
• Pathological non-IID
• Practical non-IID

APPLE – Experiments

• Compared baselines
• Separate training
• FedAvg (McMahan et al., 2017)
• FedAvg-local
• FedAvg-FT, FedProx-FT (Wang et al., 2019)
• APFL (Deng et al., 2020)
• HeurFedAMP (Huang et al., 2021)
• FedFomo (Zhang et al., 2021)
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• Pathological non-IID

APPLE – Results
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• Visualization of Directed Relationships (Pathological non-IID)
APPLE – Results
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APPLE – Results
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• Visualization of Directed Relationships (Pathological non-IID)
APPLE – Results
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Visualization of DR                                                           Data distribution



• Practical non-IID

APPLE – Results
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• Federated learning: introduction

• Federated Learning with Shared Label Distribution for Medical Image Classification (FedSLD)

• Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning (APPLE)

• PGFed: Personalize Each Client’s Global Objective for Federated Learning (PGFed)

• Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models (pFedMoAP)

• Case Study: Personalized, Real-World, and Cross-Silo Federated Learning for Breast Cancer Detection

• Summary

Overview
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PGFed – Background and motivation

…

ClientNClient2Client1

𝜃1

𝒟1

𝜃1

𝒟2

𝜃1

𝒟𝑁

Client1

𝑓2 𝜃1 𝑓𝑁 𝜃1𝑓1 𝜃1

𝜃1



…

ClientNClient2Client1

𝜃1

𝒟1

𝜃1

𝒟2

𝜃1

𝒟𝑁

Client1

47

PGFed – Background and motivation

𝑓2 𝜃1 𝑓𝑁 𝜃1𝑓1 𝜃1

𝜃1

Explicit 

collaborative 
knowledge transfer
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PGFed – Background and motivation

• Why explicit (especially for personalized model update)?
• (Explicitness: Direct engagement of multiple clients’ empirical risks)
• Intuition/motivation: facilitate the generalizability of 𝜃𝑖  directly by penalizing its performance over 

other clients’ empirical risks.

…

ClientNClient2Client1

𝜃1

𝒟1

𝜃1

𝒟2

𝜃1

𝒟𝑁

Client1

𝑓2 𝜃1 𝑓3 𝜃1𝑓1 𝜃1
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PGFed – Background and motivation

• Why explicit (especially for personalized model update)?
• (Explicitness: Direct engagement of multiple clients’ empirical risks)
• Intuition/motivation: facilitate the generalizability of 𝜃𝑖  directly by penalizing its performance over 

other clients’ empirical risks.

…

ClientNClient2Client1

𝜃1

𝒟1

𝜃1

𝒟2

𝜃1

𝒟𝑁

Client1

𝑓2 𝜃1 𝑓3 𝜃1

• Toy experiment on exemplar design 
• Cifar10, 100 heterogeneous clients

• Explicit: 𝐹𝑖 𝜃𝑖 = 𝑓𝑖 𝜃𝑖 +
𝜇

𝑁−1
σ𝑗≠𝑖 𝑓𝑗(𝜃𝑖)

• Implicit: 𝐹𝑖 𝜃𝑖 = 𝑓𝑖(𝜃𝑖) (local model of 
FedAvg)

𝑓1 𝜃1
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PGFed – Background and motivation

• Why explicit (especially for personalized model update)?
• (Explicitness: Direct engagement of multiple clients’ empirical risks)
• Intuition/motivation: facilitate the generalizability of 𝜃𝑖  directly by penalizing its performance over 

other clients’ empirical risks.

…

ClientNClient2Client1

𝜃1

𝒟1

𝜃1

𝒟2

𝜃1

𝒟𝑁

Client1

𝑓2 𝜃1 𝑓3 𝜃1𝑓1 𝜃1

…

ClientNClient2Client1

𝒟1

Client1

𝜃1

Client2

𝜃2

ClientN

𝜃𝑁…

𝒟2 𝒟3

𝑂(𝑁2) 
overhead
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PGFed – Background and motivation

• Why explicit (especially for personalized model update)?
• (Explicitness: Direct engagement of multiple clients’ empirical risks)
• Intuition/motivation: facilitate the generalizability of 𝜃𝑖  directly by penalizing its performance over 

other clients’ empirical risks.

…

ClientNClient2Client1

𝜃1

𝒟1

𝜃1

𝒟2

𝜃1

𝒟𝑁

Client1

𝑓2 𝜃1 𝑓3 𝜃1

Research question 3: How can we design 
an explicit PFL framework to further 
boost the model performance with linear 
communication complexity that remains 
practical for both cross-silo and cross-
device federated learning scenarios?

…

ClientNClient2Client1

𝒟1

Client1

𝜃1

Client2

𝜃2

ClientN

𝜃𝑁…

𝒟2 𝒟3
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PGFed – Background and motivation

• Difficulty to achieve explicitness
• 𝑂 𝑁2  communication overhead
• Proper coefficient for each non-local risk

• Proposed solution: Personalized Global FL (PGFed)
✓ Estimate 𝑓𝑗 𝜃𝑖 ≈ 𝑓𝑗 𝜃𝑗 + ∇𝑓𝑗 𝜃𝑗

𝑇
𝜃𝑖 − 𝜃𝑗 , 𝑂 𝑁2 → 𝑂(𝑁)

✓ Use adaptive coefficient 𝛼𝑖𝑗∀𝑖, 𝑗 ∈ [𝑁]

…

ClientNClient2Client1

𝒟1

Client1

𝜃1

Client2

𝜃2

ClientN

𝜃𝑁…

𝒟2 𝒟3



PGFed – Method

• Objectives of Personalized Global Federated Learning (PGFed)

• Global objective:

• Local objective:

• Plugging 𝑓𝑗 𝜃𝑖 ≈ 𝑓𝑗 𝜃𝑗 + ∇𝑓𝑗 𝜃𝑗
𝑇

(𝜃𝑖 − 𝜃𝑗) into Local objective, we have

53



PGFed – Method

• Gradient-based update
• W.r.t 𝜃𝑖:

• ෤𝑔[𝑁] can be computed by the server with:

• Client 𝑖 uploading 𝛼𝑖

• Client 𝑗 uploading local gradient
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• Gradient-based update
• W.r.t 𝛼𝑖𝑗:

• 𝑔𝛼
(1)

 (a scalar) can be computed and uploaded by the client 𝑗

• 𝑔𝛼
(2)

  (exact value needs to transmit all gradients to client 𝑖 (takes 𝑂(𝑁2) comm.))

• Estimate:

• Client 𝑗 uploading local gradient



PGFed – Method
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• To accommodate to 𝑀 selected clients per round: 
𝑁 → 𝑆𝑡 (selected set of clients in round 𝑡)

• To keep information from clients selected in 
previous round, use momentum (PGFedMo)



• Settings
• Datasets: CIFAR10, CIFAR100, OrganMNIST, Office-home
• Partition

• CIFAR10/100:(Dir(𝛼 = 0.3)), 25, 50, 100 clients, 25% sample rate
• OrganMNIST: 25 clients, Dir(𝛼 = 1.0), 50% sample rate
                              50, 100 clients, Dir(𝛼 = 0.3), 25% sample rate
• Office-home: 5 clients/domain x 4 domains, Dir(𝛼 = 0.3), 25% sample rate

• Metric: mean personalized test accuracy
• Compared methods

PGFed – Experiments & results

57

• Local
• FedAvg
• FedDyn
• pFedMe
• FedFomo
• APFL

• FedReP
• LG-FedAvg
• FedPer
• Per-FedAvg
• FedRoD
• FedBABU

Heterogeneous partition of a dataset based on 
Dirichlet distribution:
• 𝛼 = ∞ → homogeneous
• 𝛼 = 0.3/0.5/1.0 → very heterogeneous, with 

1.0 slightly balanced (tend to have lower acc.)
• 𝛼 = 0 → one class per client



• Performance on CIFAR10 & CIFAR100

PGFed – Experiments & results

58

✓ PGFed and PGFedMo boost the 
accuracy by up to 15.47%.



• Convergence speed

59

• Mean individual gain over Local

PGFed – Experiments & results

✓ PGFed and PGFedMo have 3.7× average 
speedup with highest individual gain.

• CIFAR10 • CIFAR100• CIFAR10



• Adaptive ability on new clients
• CIFAR10 & CIFAR100
• FL on 80 clients, fine-tune global 

model for 20 epochs on 20 new clients
• Mean personalized acc. on 20 new 

clients
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PGFed – Experiments & results

✓ Global models of PGFed and PGFedMo 
have highest generailizability
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PGFed – More experiments & results
Details in paper



• Federated learning: introduction

• Federated Learning with Shared Label Distribution for Medical Image Classification (FedSLD)

• Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning (APPLE)

• PGFed: Personalize Each Client’s Global Objective for Federated Learning (PGFed)

• Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models (pFedMoAP)

• Case Study: Personalized, Real-World, and Cross-Silo Federated Learning for Breast Cancer Detection

• Summary

Overview

62

PFL

ICLR ‘25



pFedMoAP – Background and motivation
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• Vision-Language Models (VLMs) like CLIP with their robust representation learning capabilities, show 
promise for addressing data heterogeneity in federated learning.

[Figures from CLIP paper]



pFedMoAP – Background and motivation
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• Vision-Language Models (VLMs) like CLIP with their robust representation learning capabilities, show 
promise for addressing data heterogeneity in federated learning.

• Traditional fine-tuning of VLMs in federated settings is challenging due to high communication overhead, 
leading researchers to explore prompt learning as a more efficient adaptation technique.

[Zhou et al., 2021]

[Zhou et al., 2021]



• Vision-Language Models (VLMs) like CLIP with their robust representation learning capabilities, show 
promise for addressing data heterogeneity in federated learning.

• Traditional fine-tuning of VLMs in federated settings is challenging due to high communication overhead, 
leading researchers to explore prompt learning as a more efficient adaptation technique.

• Existing federated prompt learning works
• Habitually fall into traditional FL paradigm where clients are restricted to downloading only a single globally 

aggregated model – not fully leveraging the prompt’s lightweight nature
• Struggling to handle extreme data heterogeneity, lacking personalization strategies

pFedMoAP – Background and motivation

65

[Guo et al., 2024]



• Personalized Federated Mixture of Adaptive Prompts 
(pFedMoAP)
• Allows download of multiple pre-aggregated prompts
• Uses a Mixture of Experts approach to treat locally 

updated prompts as specialized experts
• Implements a client-specific, attention-based gating 

network to generate enhanced text features

pFedMoAP – Background and motivation

66

Research question 4: How can we devise a personalized federated 
learning framework, tailored for prompt learning in CLIP-like VLMs, 
while fully exploiting the lightweight nature of the prompts?



pFedMoAP – Method
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• Formulations for existing paradigms
• Global objective of PFL

• Prompt learning for CLIP-like VLMs
• Learnable prompt

• Full prompt 𝑃(𝑐)of class 𝑐 is 𝑃 with embedding of label 𝑐
• Classification

• In FL, aggregated global prompt

• Mixture of Experts (MoE) output

𝑥: image

𝑓(⋅): CLIP’s image encoder
𝑔(⋅): CLIP’s text encoder
𝜏: temperature

𝑁: #experts

𝐸(⋅): an expert

Gating

Experts1 Experts2 Experts3 Experts4

[Figure from CoOp paper]

𝐺(⋅): gating, usually softmax of TopK/N from projected 𝑥



pFedMoAP – Method
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• Workflow
• Server maintains a pool of prompts



pFedMoAP – Method
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𝒬1

𝒬2

𝒬3• Workflow
• Server maintains a pool of prompts
• Each client 𝑖 ∈ 𝑆𝑡 download 𝐾 pre-aggregated (non-local) prompt

• K-Nearest Neighbors (KNN) since most likely to have similar distribution
•                            : set of clients assigned to client 𝑖, with prompts 𝑃𝑁𝐿𝑗

(𝑁𝐿= 

abbr. for non-local)



pFedMoAP – Method

70

• Workflow
• Server maintains a pool of prompts
• Each client 𝑖 ∈ 𝑆𝑡 download 𝐾 pre-aggregated (non-local) prompt

• K-Nearest Neighbors (KNN) since most likely to have similar distribution
•                            : set of clients assigned to client 𝑖, with prompts 𝑃𝑁𝐿𝑗

(𝑁𝐿= 

abbr. for non-local)

• Before local training, for once, client compute (fixed) text feature from 
non-local prompts

Gating1

Prompt1

Prompt2

Prompt3

logits

Mixture

Image 
feature

Text
feature Train Fix

Client1
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• Workflow
• Server maintains a pool of prompts
• Each client 𝑖 ∈ 𝑆𝑡 download 𝐾 pre-aggregated (non-local) prompt

• K-Nearest Neighbors (KNN) since most likely to have similar distribution
•                            : set of clients assigned to client 𝑖, with prompts 𝑃𝑁𝐿𝑗

(𝑁𝐿= 

abbr. for non-local)

• Before local training, for once, client compute (fixed) text feature from 
non-local prompts

• Gating (detailed in following slides)
• Input type ①: image feature 
• Input type ②: text feature from local prompt
• Input type ③: text features from non-local prompts
• Output: MoE text feature

①

②

③

③

Gating1

Prompt1

Prompt2

Prompt3

logits

Mixture

Image 
feature

Text
feature Train Fix

Client1

①

②

③

③
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• Workflow
• Server maintains a pool of prompts
• Each client 𝑖 ∈ 𝑆𝑡 download 𝐾 pre-aggregated (non-local) prompt

• K-Nearest Neighbors (KNN) since most likely to have similar distribution
•                            : set of clients assigned to client 𝑖, with prompts 𝑃𝑁𝐿𝑗

(𝑁𝐿= 

abbr. for non-local)

• Before local training, for once, client compute (fixed) text feature from 
non-local prompts

• Gating (detailed in following slides)
• Input type ①: image feature 
• Input type ②: text feature from local prompt
• Input type ③: text features from non-local prompts
• Output: MoE text feature

• Final step: compute logits, manually address local prompt since it is the 
only locally learnable prompt

Gating1

Prompt1

Prompt2

Prompt3

logits

Mixture

Image 
feature

Text
feature Train Fix

update

Client1
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• Attention-based gating network: mechanism

• Multi-head attention
• Pooling on features to reduce the size of gating from 1024 to 128
• Q=Pooling(     ), K=V=Pooling{                                         }
• MoE text feature:



pFedMoAP – Method
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• Attention-based gating network: design rationale against 
traditional projection-based gating network

• Projection-based gating network 

• Attention-based gating against projection-based gating
• is more robust to adaptive experts
• serves as linear probing with more capacity
• leverages CLIP's feature alignment with attention mechanism
• is agnostic to experts' order



• Datasets

76

pFedMoAP – Experiments & results

CLIP datasets, pathological label shift

CIFAR 10/100, Practical label shift

Domain adaptation datasets, feature + label shift



• Datasets
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pFedMoAP – Experiments & results
• Compared methods

• Local methods
• Zero-shot CLIP
• CoOp (prompt learning)

• Federated prompt learning + FL/PFL
• PromptFL
• PromptFL + FedProx
• PromptFL + FT
• PromptFL + FedAMP
• PromptFL + FedPer

• Personalization designed for federated 
prompt learning
• pFedPrompt
• FedOTP



• Pathological label shift on CLIP datasets
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pFedMoAP – Experiments & results
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pFedMoAP – Experiments & results

• Practical label shift on CIFAR datasets
• Dir(𝛼 = 0.5), 100 clients, 10% 

sample rate, 120 rounds
• CLIP backbone: ResNet50

• Feature + label shift on domain adaptation datasets
• 5 clients/domain, Dir(𝛼 = 0.3)
• DomainNet = 30 clients, 25% sample rate, 25 rounds
• Office-Caltech10 = 20 clients, 50% sample rate
• CLIP backbone: ViT-b-16

Office-Caltech10

DomainNet
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• Contributions of experts

pFedMoAP – Experiments & results
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• Attention-based vs. linear projection-base gating network

pFedMoAP – Experiments & results
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pFedMoAP – Ablation studies

#shots

𝜆

Differential privacy

Feature dimension

Details in paper



• Federated learning: introduction

• Federated Learning with Shared Label Distribution for Medical Image Classification (FedSLD)

• Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning (APPLE)

• PGFed: Personalize Each Client’s Global Objective for Federated Learning (PGFed)

• Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models (pFedMoAP)

• Case Study: Personalized, Real-World, and Cross-Silo Federated Learning for Breast Cancer Detection

• Summary

Overview

83

RSNA 2025



• Challenges in FL for Medical Imaging
• Limited sample size

• Due to high costs of medical imaging and labeling
• Leads to more severely inconsistent local objectives

84

Case study: PFL for real-world breast cancer detection



• Challenges in FL for Medical Imaging
• Limited sample size
• Data distribution bias

• Local demographics can hardly represent large population
• Global distribution often presents extreme imbalance

85

Case study: PFL for real-world breast cancer detection



• Challenges in FL for Medical Imaging
• Limited sample size
• Data distribution bias
• Both feature and label shift

• Decease prevalence Geographical regions and demographics
• Institutional specialization
• Equipment variations
• Clinical protocol differences
• Healthcare access across demographics

86

Case study: PFL for real-world breast cancer detection



• Challenges in FL for Medical Imaging
• Limited sample size
• Data distribution bias
• Both feature and label shift
• Uncertainty in labels

• Subjective nature of medical image interpretation causes challenges in terms 
of label quality and consistency

87

Case study: PFL for real-world breast cancer detection



• Challenges in FL for Medical Imaging
• Limited sample size
• Data distribution bias
• Both feature and label shift
• Uncertainty in labels

88

Case study: PFL for real-world breast cancer detection

Research question 5: How can we carefully implement, train, 
and evaluate existing FL/PFL algorithms and potentially design 
novel federated frameworks to address the challenges in 
medical imaging applications?



• Datasets
• RSNA breast cancer detectinon: 54K 

mammograms with metadata 
• CBIS-DDSM: 3K annotated 

mammograms with pixel-level lesion 
masks.

• CMMD: 5K studies from two Chinese 
hospitals for cross-domain evaluation.
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Case study: PFL for real-world breast cancer detection



• Data partition for FL

• Setting 1:
• RSNA only
• Partitioned by machine ID

• Setting 2:
• RSNA, CBIS-DDSM, CMMD
• Partitioned by datasets

• 85% training, 15% validation
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Case study: PFL for real-world breast cancer detection



• Methods
• Local
• FedAvg
• APPLE
• PGFed

91

Case study: PFL for real-world breast cancer detection

• Generative data augmentation
• Mitigating imbalance
• Mitigating heterogeneity

Real

Synthetic



• Methods
• Local
• FedAvg
• APPLE
• PGFed

92

Case study: PFL for real-world breast cancer detection

• Generative data augmentation
• Mitigating imbalance
• Mitigating heterogeneity

Real Failed cases: Setting 2 client 2 synthesized images
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• Results

Case study: PFL for real-world breast cancer detection

Setting 1: RSNA only Setting 2: Multiple datasets
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• Results

Case study: PFL for real-world breast cancer detection

Setting 1: RSNA only Setting 2: Multiple datasets
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• Results

Case study: PFL for real-world breast cancer detection

Setting 1: RSNA only Setting 2: Multiple datasets
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• Results

Case study: PFL for real-world breast cancer detection

Setting 1: RSNA only Setting 2: Multiple datasets



• Summary
• Traditional FL (e.g. FedAvg) < Local with severe heterogeneity
• Proposed PFL (APPLE, PGFed) > FedAvg and Local
• Generated data: higher perceptive quality usually translate to higher performance

• For a FL system deployed in real-world
• Can use more advanced model with better pretraining.
• Practical hyperparameter tuning is hard, alg’s with more hyperparameters is harder to deploy

• Research: same values for all clients, global metrics for selection.
• Real-world: clients can use different values, local metrics for selection.
• Example, hyperparameters: 𝑎 2 values, 𝑏 3 values,research has 2x3=6 combinations, real-

world 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑎3, 𝑏3, 𝑎4, 𝑏4: (2x3)^4=1296 combinations
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Case study: PFL for real-world breast cancer detection



• Federated learning: introduction

• Federated Learning with Shared Label Distribution for Medical Image Classification (FedSLD)

• Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning (APPLE)

• PGFed: Personalize Each Client’s Global Objective for Federated Learning (PGFed)

• Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models (pFedMoAP)

• Case Study: Personalized, Real-World, and Cross-Silo Federated Learning for Breast Cancer Detection

• Summary

Overview
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FedSLD (Global FL)

Summary of the four FL/PFL algorithms
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APPLE (PFL) PGFed (PFL)

Estimate prior and reweighting

+ Sharable label dist.

+ Reweights sample loss

- Limited performance gain
- Only considers label shift

PFL with adaptive aggregation

+ Adaptive personalized aggregation

+ Flexible between glob./pers. obj’s

- Large comm. (𝑂(𝑁2)) → cross-silo
- Larger memory footprint

Explicit and efficient personalized global 

objective with first order approximation

+ More generalized personalized models

+ Explicitness with 𝑂(𝑁) communication

- Slightly larger communication than FedAvg
- Requires extra server computation/storage

pFedMoAP (PFL)

PFL prompt learning for CLIP with attention-

based gating network in a MoE structure

+ Pre-aggregated prompts sharing allows MoE

+ Flexible and robust attention-based gating

- Clients needs to be able to run CLIP
- Computation slightly ↑ as #experts ↑



FedSLD (Global FL)

Summary of the four FL/PFL algorithms

100

APPLE (PFL) PGFed (PFL)

Estimate prior and reweighting PFL with adaptive aggregation Explicit and efficient personalized global 

objective with first order approximation

pFedMoAP (PFL)

PFL prompt learning for CLIP with attention-

based gating network in a MoE structure

Summary of FL case study: breast cancer detection 
• Traditional FL (e.g. FedAvg) < Local with sever heterogeneity
• Proposed PFL (APPLE, PGFed) > FedAvg and Local
• Generated data: higher perceptive quality usually translate to higher performance
• Deploying FL system in real-world will face more challenges (e.g. hyperparameter tuning across 

heterogeneous clients).
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Future directions

• Federated learning with large foundation models.

• Synthetic data generation and augmentation via foundation models.

• Enhancing privacy, security, and trustworthiness in FL.

• Developing multimodal federated systems across diverse domains.
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