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The exponential growth of data is undisputed. but the numbers behind this explosion - fuelled by internet of things and
the use of connected devcies - are hard to comprehend, particularly when looked at in the context of one day

Bl o R d = ' , Data Explosion Stats

The world generates 402.74 million terabytes of data
daily.

Global data volume will reach 147 zettabytes in 2025.
By 2028, data creation is projected to hit 394
zettabytes.

The U.S. leads with 5,381 data centers, followed by
Germany with 521.

[Khyati Hooda, KeyWordsEverywhere.com

ACCUMULATED DIGITAL UNIVERSE OF DATA

4.47B

447B
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RACONTEWR

[Jeff Desjardins, World Economic Forum]
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Internet of things data

[Risk Management Magazine]
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Health data

MEDICAL
IMAGING

LABS AND
GENOMIC
SEQUENCING

HEALTH, CMS,
AHA ANNUAL |\ —
SURVEY

SEARCH PHARMACEUTICALS
ENGINE DATA RESEARCH

[American Hospital Association]
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B SPRINTO Frameworks Platform Resources — AMA% “ Renew Search

HIPAA

HIPAA privacy rule

2 Min Read

> GDPR Privacy Policy: Ensuring Compliance with EU Data Rules

GDPR Privacy Policy: Ensuring
Compliance with EU Data Rules

D Save @ Copy IEJ Print £ Share

'The HIPAA Privacy Rule provides federal standards to safeguard the privacy of personal health information and

gives patients an array of rights with respect to that information, including rights to examine and obtain a copy of

Bhuvesh Lal ¢ Sep 30, 2024 (4
> @ X @ 0 their health records and to request corrections. The U.S. Department of Health & Human Services' (HHS) Office of

Civil Rights (OCR) oversees compliance with HIPAA privacy requirements.
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Overview

* Federated learning: introduction

* Federated Learning with Shared Label Distribution for Medical Image Classification (FedSLD)

* Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning (APPLE)

* PGFed: Personalize Each Client’s Global Objective for Federated Learning (PGFed)

* Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models (pFedMoAP)

e (Case Study: Personalized, Real-World, and Cross-Silo Federated Learning for Breast Cancer Detection

* Summary
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Federated learning: introduction

e Basic mechanism of traditional FL
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Federated learning: introduction

e Basic mechanism of traditional FL

* Broadcast _
N ooy
* Client (local) training (B o
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Federated learning: introduction

* Basic mechanism of traditional FL
* Broadcast -
* Client (local) training i
» Server (global) aggregation (
FedAvg: w = ), p;w;

Research
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Federated learning: introduction

e Basic mechanism of traditional FL

i
i*1 Broadcast
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Federated learning: introduction

e Basic mechanism of traditional FL

i
i*i Broadcast
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Federated learning: introduction

* Applications of FL

. Medical Center Federated Server
e Cross-silo FL
* Medical centers E

* Financial institutes

* Cross-device FL
* Smart phone/loT devices
* Smart vehicle

Federated Server

Cross-silo FL Cross-device FL
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Federated learning: introduction

d Applications Of FL G differe different difference ¥
° Cross-s”O. FL q1 Wz ea r4 ts y6 u7 i8 09 po
e Medical centers e
* Financial institutes a s E i 9 E i 5 L
e Cross-device FL |  AAAOAGORS @
* Smart phone/loT devices e esebdelerww
* Smart vehicle 3 © B English

* One of the earliest successes of FL: Gboard
e “HeySiri” from Apple, “Alexa” from Amazon...

“Hey Siri”
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Federated learning: introduction

Federated Server
. ] Traditional W Shared
e Data heterogeneity and personalized FL (PFL) (global) FL | &8 =7~==~ ™ (global) model

* Data heterogeneity — non-IID
* E.g. medical datasets are often non-IID
» Different data acquisition protocols
e Different local demographics
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Federated learning: introduction

Federated Server
. ] Traditional W Shared
e Data heterogeneity and personalized FL (PFL) (global) FL | &8 =7~==~ ™ (global) model

* Data heterogeneity — non-IID
* E.g. medical datasets are often non-IID
» Different data acquisition protocols
e Different local demographics
* Traditional (global) FL
* Trains a single global consensus model
* [ssues caused by data heterogeneity
* inferior performance
* slower convergence
* Loss of clients’ incentives to participate in FL
e Personalized FL (PFL)
* Allows customized models for different clients
» Systemically mitigates data heterogeneity issue

Personalized (local) models
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Overview

* Federated learning: introduction

Global FL

Federated Learning with Shared Label Distribution for Medical Image Classification (FedSLD)

 Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning (APPLE)

ol 1 ° PGFed: Personalize Each Client’s Global Objective for Federated Learning (PGFed)

_ * Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models (pFedMoAP)

e (Case Study: Personalized, Real-World, and Cross-Silo Federated Learning for Breast Cancer Detection

* Summary
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Global FL « Federated Learning with Shared Label Distribution for Medical Image Classification (FedSLD)
ISBI 22
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FedSLD — Background and motivation

* FedAvg assumption Client 1
* Weighted sum of local empirical risks |

* Weights are often n;/ ). ; n;
* Assumes knowledge of number of samples

Research question 1: How can we leverage other sharable information to design a % “ . .
novel global FL algorithm for medical FL to mitigate the data heterogeneity issue? .

) Client N

Ny .cA

e
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FedSLD — Background and motivation

* FedAvg assumption Client 1
* Weighted sum of local empirical risks |

* Weights are often n;/ ). ; n;

* Assumes knowledge of number of samples
Research question 1: How can we leverage other sharable information to design a % E‘ &
novel global FL algorithm for medical FL to mitigate the data heterogeneity issue? .

Client N
* Federated Learning with Shared Label Distribution (FedSLD) e

* Leverages information and statistics regarding the local datasets
e Assumes knowing number of samples in each class

* This assumption usually holds true for medical cross-silo FL %“
* Estimate of label distribution | &
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FedSLD — Method

* Estimation of label distribution Client 1
* Non-IID: P;(x,y) # Pi(x,y)
* By Bayes’ theorem, P;(x|y)P;(y) # P;(x|y)P; () I I
* Here, we only consider different P;(y) # P;(y) T Ne
» Aggregate knowledge of #samples in each class, estimate P(y) ' Client N
by Ny.cA
N
~ =1 N
?(y — C) — ll:ll LC
i=1 1

e
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FedSLD — Method

* Compute the percentage of each class in each mini-batch
B

* During local update, given a batch of data {(x, v,)}3-; with B
data samples, compute /R
524l = I = O &
po(y = c) = =E=L I
A —A

20% 50%  30%
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FedSLD — Method Algorithm 1 FedSLD.

Input: Initialized model parameter weights w°, number of

d WElgh eaCh data Samples' COntribUtiOn to the IOSS clients N, number of local epochs E, batch size B, is the
batch size, learning rate 7, number of rounds R.
based on 1: Vi € [N].e € [C], acquire n;, client i’'s numbers of
* The estimation of the prior of each class samples of each class c.

> EN:1 Ni,c .
2: Ve € [C], Py = ¢) = 27— // compute estimated

e The percentage of each class in each mini-batch >E,

prior label distribution.
3: forr < 1,2,...., Rdo
4 Vi € [N] w! = w"! // broadcast model parameters.
5: fori < 1,2, ..., N in parallel do
6: for {ry, yx }2_, in all minibatches do
7
8

* Final loss of the mini-batch

B [ - L C
£, (G vt = = ) ) Viee log(fi () v moly =) = Sk = /B
i ’ ¢ : Compute loss £, by Equation|[3]
k=1 c=1 9: wy — w] — VLl
10: end for

. 11: end for

* Aggregate the model at the end of each training 120w’ =31, M/ aggregate model updates

. 13: end for

round as in FedAvg 14 return P
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FedSLD — Experiments & results

* Datasets

* MNIST re s
* CIFAR10

* Two benchmark datasets PathMNIST OraganMNIST (axial)
: - , o IOV R RS 159N

* Two medical imaging datasets from MedMNIST
collection
* OrganMNIST (axial) (11-class liver tumor images)
e PathMNIST (9-class colorectal cancer images)
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FedSLD — Experiments & results

 Compared baselines

* FedAvg
* FedProx

* Two non-IID settings

* Pathological non-IID (12 clients)
* Randomly select 2 classes for each client

* In each class, assign a random number of images

* Practical non-IID (12 clients)
* Randomly partition each class of the dataset into 12 shards

(10x 1%, 1 x 10%, 1 x 80%)
* Randomly assign one shard from each class to each client

* Asimulation that is closer to real-world medical applications
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FedSLD — Experiments & results

MNIST CIFAR10 OrganMNIST_axial p PathMNIST
: M’-‘ ' N
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PFL
uca 22 *© Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning (APPLE)
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APPLE — Background and motivation

* FedAvg aggregation

Federated Server

* W=D
* p; = N;/ X N;, aggregation weights are fixed = Z N; W,
, — 2. Nj
* Most existing FL/PFL methods /’f\
* Use FedAvg-like aggregation /Med”ce”_lq ) (e e A /C°r'ftyjf"ta'\

* Training is either global or personalized

Research question 2: How can we develop an adaptive aggregation
strategy that optimally weighs different clients’ contributions for each
participant, while maintaining a flexible balance between global

collaboration and local personalization objectives in cross-silo Personalized (local) models

federated learning?
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APPLE — Background and motivation

* Adaptive Personalized Cross-Silo Federated Learning
(APPLE)
* The model of a client

 Personalized model w(p)

used to do inference on client i

e Core model w( 9. 3 constructing part of personalized model on
client i, server also maintains core models from every client (Client 1 A
N\ J

* Directed relationship (DR) vector p;: learnable weights
(coefficients for core models) on client i, always kept locally
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APPLE — Method

* Local training

* (Clients’ own core models and
DR vectors are updated

* Server
* Broadcast core models to
each client at the beginning
of each round
e Collect (updated) core models | _______ _______ _______

0 (p)
Y \ \ ° . J— .
at the end of each round ol olifl o) Pi < Pi — M2y - Fi (w;™)
| W1 P (W2 O g (Ws )
\ \ 7 N /

[CIient 1

(c) (c) d (»)
s w e w —n—=F;(w)
/Server l l ! aWi( R

- -

Client 2 D2,1,P2,2) 02,3 ) ( Client3 , 2, P33

{ -\\ |' \I I' \I
) )| | ) )
! \

. —— JN\ T e ’ AN e
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APPLE — Method

* Proximal Directed Relationships
* Since downloaded core models are not trained from local empirical risk, training might be drawn
to resembling individual learning (DR matrix drawn to identity matrix)
* Penalize DR vector by a proximal term 10 — cosine

—— Exponential

0.8 1

0.6

¢ R (W) = 25 e £ (w3 €) +A0) Ellp: -~ poll3

_________________________

0.4 1

0.2 1

"_N]

n
* Prox-center py = [=
n t curren{i round

* Loss scheduler A(r) € [0,1]: a decreasing function w.r.t. current round, controls the focus of
training; u: the peak value of the proximal term coefficient

* Proximal term coefficient: oo - FedAvg; large = facilitate learning global high-level feature;
small = concentrate on local empirical risk, learning the personalization

) "rrn
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APPLE — Method

* Proximal Directed Relationships
* Since downloaded core models are not trained from local empirical risk, training might be drawn

—— Cosine
—— Exponential

------

|
1 SN
+ F(W?) = Zeepr £(w36) AT lipi = poll |

------

n n
* Prox-center py = [, ...,7] i é
\ current roydd

----------------------------------

training; u: the peak value of the proximal term coefficient
* Proximal term coefficient: oo - FedAvg; large = facilitate learning global high-level feature;
small = concentrate on local empirical risk, learning the personalization
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APPLE — Experiments

* Datasets  Compared baselines
* MNIST * Separate training
* CIFAR10 * FedAvg (McMahan et al., 2017)
* OraganMNIST (axial) * FedAvg-local
* PathMNIST * FedAvg-FT, FedProx-FT (Wang et al., 2019)

 APFL (Deng et al., 2020)

e Two non-lID settings (same with FedSLD) ¢ HeurFedAMP (Huang et al., 2021)
* Pathological non-1ID * FedFomo (Zhang et al., 2021)

e Practical non-1ID
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APPLE — Results
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APPLE — Results

* Visualization of Directed Relationships Patholog|cal non-IID)

4-------------------------------------------------------------------------N

4 .
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* Visualization of Directed Relationships (Pathological non-IID)

Visualization of DR
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* Visualization of Directed Relationships (Pathological non-IID)
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Overview

|cch:;; o PGFed: Personalize Each Client’s Global Objective for Federated Learning (PGFed)
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f1(6,1) f>(61) fn(61)

~—
e
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Explicit

f1(6,1) f-(6,) fn(61)

collaborative
knowledge transfer %/
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PGFed — Background and motivation

* Why explicit (especially for personalized model update)?
* (Explicitness: Direct engagement of multiple clients’ empirical risks)
* Intuition/motivation: facilitate the generalizability of 8; directly by penalizing its performance over
other clients’ empirical risks.

f1(61)  £,(6,) f3(61)
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* Why explicit (especially for personalized model update)?
* (Explicitness: Direct engagement of multiple clients’ empirical risks)
* Intuition/motivation: facilitate the generalizability of 8; directly by penalizing its performance over
other clients’ empirical risks.

—¥— Implicit, max=|64‘24%/' Implicit,
. . . 66 1 —*— Explicit, max=66.57% 2’:(:;;.:0% L 0.08
Client, * Toy experiment on exemplar design o5 il ok
D * Cifar10, 100 heterogeneous clients K3 //' 4 008

L 0.04
--------- 10 -

----------------------

« Implicit: F;(6;) = f;(6;) (local model of

FedAvg) . / Y

0 r 0.00

0 2 a 6 -10 0 10 20 30
Steps Individual performance gain%

. Epricit:iFi(Hl-)i = £,(6;) +Eﬁ2j¢if}'(9i)i hj /

r0.02

f1(61)  £,(6,) f3(61)
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PGFed — Background and motivation

* Why explicit (especially for personalized model update)?
» (Explicitness: Direct engagement of multiple clients” empirical risks)
* Intuition/motivation: facilitate the generalizability of 8; directly by penalizing its performance over

other clients’ empirical risks. —
Client,

O(Nz)
overhead

Client, Client, Clienty

<N | B 4>
o o ®

f1(61)  £,(6,) f3(61)
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PGFed — Background and motivation

* Why explicit (especially for personalized model update)?
» (Explicitness: Direct engagement of multiple clients” empirical risks)
* Intuition/motivation: facilitate the generalizability of 8; directly by penalizing its performance over

other clients’ empirical risks. —
Client,

Research question 3: How can we design
an explicit PFL framework to further
boost the model performance with linear

commumcat:on compleX{ty that remains Client, Client, Client,
practical for both cross-silo and cross-

device federated learning scenarios? — — —
® ® ®
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* Difficulty to achieve explicitness * Proposed solution: Personalized Global FL (PGFed)

+ O(N?) communication overhead s v {Estimate ,(6,) ~ /,(6,) + V,(6,) (6,8, O(N?) = O(N}
* Proper coefficient for each non-local risk ==) v iUse adaptive coefficient a;;Vi,j € [N]

Client,

Server
min £, 71 F;(6)

- >
Client i min F,(6;, ;) = expriie | [Client & )
R v ks ' knowledge - —
fi(gi) + HZ a;j :f](at): trzmsferg - l’lél]lcn Fie(6x) = fi(6x) L.
J#i oo (ours) Implicit
Too much comm. to access f;(-), Vj? knowledge
T transfer J

(Estimate! /;(6) ~ fi(6;) + v£i(6;) (6:—6)) | texisting) )
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e Objectives of Personalized Global Federated Learning (PGFed)

+ Global objective: 3 F(®.4) = min ZpiFi(Bi;a@l)

--------

____________________________________________

REXL(QZ-,ai) = M ZJE[N] (Wi (fj( i)+ Vﬂjfj(gj)T(gi o 9-3"))
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Riug (0 ) = 1Y je vy i (£5(65) + Vo, £5(6,)"(8; — 6)))

PGFed — Method

 Gradient-based update
©Wrt0 Vg, Fi(0;, i) = Vo, fi(0:) + Vo, Ry (0:. i)

aug

= Ve, fi(0;) + Z @;;Ve, [;(6;) .

JEIN]

. -

gin]

* Jn) can be computed by the server with:
* Clienti uploading a;
* Client j uploading local gradient
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Ritug (0 ) = 103 1 vy iy (£5(6,) + Vo, £3(6,)7(6: — 6)))

PGFed — Method

* Gradient-based update
© Wt Aij: vaz‘jFi(G’i: a’l) — (fj‘( ) + Vg fj( )T(g’l - 93))
:\/:L(fj(g) vG fj‘( ) )+ﬂv9 fj( )

9(1) 9(2)

o~

* Jda () (a scalar) can be computed and uploaded by the client j

. gc(tz) (exact value needs to transmit all gradients to client i (takes O(N?) comm.))

T
* Estimate: ¢{?) ~ gly 6, (Z Ve, [ (0 ) 0,

JE[N]
* Client j uploading local gradient



PGFed — Method

* To accommodate to M selected clients per round:
IN] — S, (selected set of clients in round t)

9s. = 1 Z @ijVo, [(0;) gs, = % > Ve, fi(6))

j€8t jESt

* To keep information from clients selected in
previous round, use momentum (PGFedMo)

gs, = (1 — 8)gk, (downloaded) + 3g%, (previous)

Algorithm 1 PGFed and PGFedMo

Input: N clients, learning rates 71, 12, number of rounds
T, coefficient «(, momentum /3 for PGFedMo)

OQutput: Personalized models 0{, 01:’\}.

ServerExecute:
I Initialize a5 = 1/M Vi, j € [N], global model 65,
2. Afi] + «; Vi € [N]
3 fort+1,2,....,7T do
4 Select a subset of M clients, S;
s gt {}: V¢ < {} // built for next round
6: fori € S; in parallel do
7 if =1 then
8
9.

6!, 95" .V 1(6!). v, + ClientUpdate(8',.}. 1)
else

10: Js, <K Ejest,l @i Vi-1[j]

ik gst—l — % Ejest—i vt_l[ﬂ

12: 0!, 95"V f(8!).c; + ClientUpdate(8' % .
Js, 1-9s, .- gz(i)ﬂ

13: end if

14: // the next line records the values for next round

15 Al e ai gt Vli] < o8 Vii] « V£(6))

16: 04106 — 2ics, Pibs

17:  end for

18:  fori € ([N] — &) in parallel do

190 007 g gt

20:  end for

21: end for

22: return 07, ..., 6%

University of
w Pittsburgh

ClientUpdate(0';2 ¢ (. §.g. o™)):

—_

= = s
o R R R

-l

globa

. if t=1 then

6 + ClientUpdate(6,, ; ,.7:) as in FedAvg
else

0’? A e_tt;;)})al
gf < g // without momentum
gt (1 —3)g + BgL" #/ with momentum
for Batch of data B € D; do ;

0! « 6! — 1 (VF(6L.B) +§})

g =g7e;

Vi€ g ¢ i i — mlgfth i + ¢@)
end for

: end if

g&l) — (f(Of) = Vf(Hf-)TOQ?) // for next round

- return 0!, ), V1(00), a;
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PGFed — Experiments & results

* Settings
e Datasets: CIFAR10, CIFAR100, OrganMNIST, Office-home
* Partition
* CIFAR10/100:(Dir(a = 0.3)), 25, 50, 100 clients, 25% sample rate
e OrganMNIST: 25 clients, Dir(a = 1.0), 50% sample rate
50, 100 clients, Dir(a = 0.3), 25% sample rate
» Office-home: 5 clients/domain x 4 domains, Dir(e = 0.3), 25% sample rate

* Metric: mean personalized test accuracy

* Compared methods Heterogeneous partition of a dataset based on
* Local *  FedReP _Dirichlet distribution: _________________________________ .
« FedAvg  * LG-FedAvg { + a = o > homogeneous E
* FedDyn * FedPer i a=0.3/0.5/1.0 2 very heterogeneous, with i
* pFedMe - Per-FedAvg i 1.0 slightly balanced (tend to have lower acc.) !
* FedFomo -+ FedRoD i * a = 0 -2 one class per client |
* APFL * FedBABU D !
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e Performance on CIFAR10 & CIFAR100

CIFAR10 CIFAR100
25 clients 50 clients 100 clients 25 clients 50 clients 100 clients

Local 72404045 70284038 67.394£0.20 | 32.7440.08 26.05+£0.34 23.06+0.47

FedAvg [26] 65.07£025 64414066 63104046 28484050 26.06+0.65 25.5840.80

FedDyn [1] 67.314£0.36 65.0240.91 62.494+0.06 | 34174043 27.06+0.18 23.8840.36

pFedMe [33] 70604093 68024035 66.40-0.04 | 27.07+0.24 23.82+0.06 22.35-+0.03

FedFomo [13] 72334003 7217+048 70.86=0.27 | 32.1540.61 25.00+1.17 24.48+0.44 v" PGFed and PGFedMo boost the

APFL [6] 77034096 77.36+0.18 76.20+0.13 | 30.16+0.93 35.15+0.65 33.86=+0.60 o

FedRep [3] 76.854+0.44 76034017 72304052 | 33.4340.80 26.86+0.30 22.764+0.45 daccuracy by up to 15.47%.

LG-FedAvg [23] 79834098 70444031 67.55+0.00 | 33.65+0.10 27.13+0.37 24.82+0.28

FedPer [2] 77844018 T77.76+0.92 75.01+0.20 | 35.22+0.67 28.63+0.70 25.56+0.26

Per-FedAvg [7] 75494074 76274050 75414035 | 32.8040.43 32.2440.75 32504021

FedRoD [4] 79734068 T79.61+£0.92 T77.76-0.32 | 30.55+0.58 33.87+£2.42 31.49+0.19

FedBABU [28] 78024036 79.35+0.84 76.3440.22 | 32.7140.23 20.66+£0.64 27.7240.11

PGFed (ours) 81.02+0.41 81424031 78564035 | 43.12+0.03 38.45+0.44 35.71 +0.54

PGFedMo (ours) 81.204+0.08 8148+0.32 78744022 43444014 38504045 3576+0.65




University of
w Pittsburgh

PGFed — Experiments & results

* Convergence speed * Mean individual gain over Local

* CIFAR10  CIFAR10  CIFAR100
25 clients | 50clients | 100 clients | 25clients | 50clients | 100 clients | 25clients | 50clients | 100 clients
#round speedup | #round speedup | #round speedup FedAvg | —8.994+10.36 | —8.90+1548 | —5.02+14.30 FedAvg | —3.20+£422 | 0.024+£4.63 | 1.77£6.38
APFL 31 1.0x | 28 1.7x | 24 2.6x APFL 2.79+8.07 | 5.73+8.43 | 8.37+6.91 APFL, 6.48£293 | 8704337 | 9.31 +£4.55
Fedper | 8 39x | 6 78x | 8 7.9x FedPer | 5314256 | 8.3146.00 | 8.63+5.26 FedPer | 3434180 | 2164245 | 2.31 +3.54
per-redavg| 31 1.0x | 47 1.0x | 63 1.0x per-Fedavg| 0.72+6.22 | 5.02+7.39 | 8.09 4 7.00 Per-Fedavg| 0.07+3.71 | 547 +3.86 | 7.49 +5.73
FedRoD | 26 12x |35 1.3x |10 6.3x FedRoD | 7.80 +3.68 | 8.8446.29 | 10.6846.14 FedRoD | 7.324268 | 6.59+3.17 | 7.47 + 3.69
PGFed 9 3d4x | 14 34x |15 4.2x PGFed | 849+ 4.67 | 10.78+5.88 | 11.15£5.06 PGFed | 9344 171 | 9.01£2.97 | 12.05+3.93
PGFedMo | 9 34x | 14 34x |15 4.2x PGFedMo | 8.61 +3.59 | 10.9046.11 | 11.1645.44 PGFedMo | 940+ 1.87 | 8.99+2.76 | 12.07+3.97

v PGFed and PGFedMo have 3.7x average

speedup with highest individual gain.
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* Adaptive ability on new clients 90

= memmaman: | g0l 4 —
* CIFAR10 & CIFAR100 85 o ey o e won o |
. . 7077 P o /
* FLon 80 clients, fine-tune global . ol ="
. : [
model for 20 epochs on 20 new clients g 2 £ o
(9} (9}
. © ®
* Mean personalized acc. on 20 new 5" S a0
. < <
clients 70 »
=¥~ Local
65 20 4 == FedAvg+fine-tuning on 20 new clients
—@— Per-FedAvg+fine-tuning on 20 new clients
10 —4— PGFed-+fine-tuning on 20 new clients
—#— PGFedMo+fine-tuning on 20 new clients
00" Local FedAvg Per-FedAvg PGFed PGFedMo 6 _r', 1l0 1I5 2I0

Epochs

v Global models of PGFed and PGFedMo
have highest generailizability
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g

e e e e - DetaHS HR-PA P EF ~
,' \I I' ‘ Art Clipart Product Real World | Mean \‘
0.804
: 0.80 e 0.80 N 1 Local 17.16 £+ 0.85 37.65 £ 0.47 43.83 £0.40 24.50 £0.21 30.79 £ 0.23
B e 0.754 1

I 24, e e e ey | E s e el | 2 1 FedAv 11.68 +1.26 41.29 £ 0.85 4249 +1.28 19.14 £ 0.89 28.65 + 0.49
1 7 T o R MERATA | 5 PO T S L L A I g
T e iEhE ';Iw*‘ S | jgﬂ‘f;“}vr%ﬁ'j VT gor ! APFL 10.11 + 1.55 1467 L0610 5040 L056 25851088 35.00 £ 0.41

i i 2 A Boes 1 FedRep 20.24 + 1.45 38.43 +1.02 43.70 £ 1.04 24.02 £ 0.81 31.60 £ 0.05
1 % 0.65 B 0857 [N ]
: ﬁ . g ool ““f{,:'.\j g 0.50 : LGFedAvg 17.54 4+ 0.45 38.75+£0.13 44.59 + 0.62 25.79 + 0.61 31.67+0.21
& E : ;';:’l,’ ! . : FedPer 17.83 £ 1.07 38.97£0.35 45.87+£0.13 25.01 £0.52 3192+ 0.24
[ T £ T H T 1 Per-FedAvg 14.62 = 0.40 39.94 +1.29 44.40 4+ 1.32 21.58 + 0.65 30.13 + 0.07
1 = < i i £ 0.50
T Rt o :::;M g0 ; o ::{:Qm 3 oI :‘:’;:’HM : FedRoD 19.67 £ 1.23 42,44+ 0.77 44.34 £ 2.07 24.28 £ 1.69 32.68 £ 0.69
! 045 == FedRoD 0451 - FedioD ossy -~ FedRoD 1 FedBABU 18.18 + 3.54 42.10£2.31 43.51+0.91 26.81 +1.86 33.38 £ 0.29
1 — PoFed f — PGred i — PGFed 1
: R 20 40 60 :za 00 120 140 240 0 40 60 ado 100 120 140 00 20 40 60 zn 100 120 140 : PGFed 22.40 £ 0.26 46.48 +1.00 49.86 + 2.14 26.04 + 0.80 36.19 +0.92
I roun raun: TOUN T = 1
H 25 client by 50 client 100l : PGFedMo 22.16 + 0.45 45.88 + 0.83 49.45 £ 0.19 26.60 + 0.99 36.02 4+ 0.20
: (a) chents (b) 50 clients (©) chients 1 Table 2. Mean and standard deviation over three trials of the mean personalized accuracy% of the four domains (5 clients/domain) and the
1 Figure 1. Convergence behavior of the personalized FL approaches with top performance on CIFAR1(0. While achieving the highest : average performance on Office-home dataset. The highest and second-highest accuracies under each setting are in bold and underlined,
‘\ accuracy performance, PGFed is also able to consistently converge faster than several of the baselines that reach high accuracies. 7 respectively.

o
N ——————— -

~ L
7 oS
4 0 5 10 15 20 \ 25 clients 50 clients 100 clients
[ o ] u ] ol - regression line s ]| 1 sample 50% sample 25% sample 25% | Images/s | Relative speed | Accuracy
: aE SN L] 1oyl o terts p R | client i 1 Dir(1.0) Dir(0.3) Dir(0.3) o
| = [ || 010 f o e - la o 1 FedA 6917.1 100.00 64.414+0.66
| ] BRatBigemecgesees Seshs I Il Local | 90.45:0.19 | 90.630.07 | 87.1140.10 noer 23808 | 48.90% | 77361018
: . R e = LI . P A § 0005 T 1 FedAvg 99.114+0.03 | 98.74£0.04 | 98.471+0.08 . 34(4} rOIOQO/? 76.27i0."0
| )58 Sais um gos” - e | ", i aprFL 97.49+£0.05 | 97.5340.06 | 96.19-£0.11 per Fedavg S I o
| | o Ameoate =s o B8 i e “Th | I FedRep | 95.06:£0.16 | 94.86£0.07 | 92.47-£0.04 FedRoD 6682, 96.61% | 79.6140.
g " ' | ™ 1} LGFedAvg| 90.4710.18 | 90.99.£0.08 | §7.5210.22 PGFed 6120.0 88.48% | 81.4240.31
! e H 5 = . % oot 11 FedPer | 97.8940.06 | 97.55+0.08 | 95.56+0.33 PGFedMo 6032.8 87.29% 81.484-0.32
! ® aEssn’¥ « wms mim osm R I {1 PerFedivg 98.40+0.02 | 96.804+0.04 | 95.0940.07 PGFed-CE’ | 61755 89.28% | 81.16£0.56
1 e ] o1s [ 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 : FedRoD 98.61+0.05 | 98.14£0.09 | 97.05£0.06 "
1 — — — ¥ train smples # train samples 1 FedBABU | 96.494+0.28 | 94.334+0.13 | 91.074+0.23 A more cnmmunicelion-e[‘ﬁcienl var:ialiun of PGFed, introduced in Appendix D
: (a) (b) (<) 1 Table 3. Computational speed (in terms of “images/s”) and accu-
T o i ) ) ) i ) ) o : PGFed 99.204+0.04 | 99.17+0.05| 98.944+0.02 racy on CIFAR10 with 50 clients
: Figure 2. Visualization of the chf'mgc in A. ]j'lgurc (a) is a heat map of t.hC c.hangc 1.n A Ffr Flgu.r(? (b) fmd (c), the Y—-ElXIS of Figure (t?) H PGFedMo | 99.2140.04] 99.1740.07 | 98.864-0.06
1 rc‘prf:scms th(? column average of .thc change in A (the average change ot‘wm' ghts ot‘ client Js cmp}ncal I'IS!C on pthcr clients). The Y—a‘x1s : Table T Mcan and standard deviation over three thals oF the moan
I of Figure (c) is the row average of the change in A (the average change of weights of the auxiliary risk on client ¢). Through the regression . 7
v o L K =T K . - ypersonalized test accuracy (%) on OrganAMNIST /
AN line, we verity the positive correlation between A A and n; in Figure (b), and the negative correlation between Aey; and n; in Figure (c). ,’ \*~ R4
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|CLPRF'Lzs * Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models (pFedMoAP)
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pFedMoAP — Background and motivation

* Vision-Language Models (VLMs) like CLIP with their robust representation learning capabilities, show
promise for addressing data heterogeneity in federated learning.

et ittt \\ e e O ottt e .
4 . . / . N\ ImageNet Zero-Shot 1
[ (1) Contrastive pre-training (2) Create dataset classifier from label text ‘ [ ResNet101 CLIP  AScore :
| 1 1
) 11
: plane i ImageNet I R4 762 762 % |1
| 1 g H
) car 11 1
: Pepper the Text : : 1
aussis pup » dog g & photo of Text 11 64.3 701 +5.8% !
: Encoder i i l i des a [object]. Encoder : :lmageNetVZ ’ :
| ! ’
T T T . | T e

: 1| T2 | T3 N i limageNet-R 377 889  +512% ||
| X - |
: L, | LT LT | pT | . | LTy - 1l ¥ 9, R/ i
: (3) Use for zero-shot prediction ¥ v v v : : ObjectNet ) b ; ) 7 32.6 723 +39.7% |
: I LT [T, )Ty Ly Ty o Ty T, T; T : 1 - . g :
I 11 | Net { I / 1

| 1 1 lmageie ( 252 602  +35.0%
Image 1 1
I . I3 LTy | 3Ty [I3T3 | . | I3Ty Image I e P - : i Sketch 1
: Bk 1 vy Ll Ll . 11In : : :
| 1
\ " J limageNet-A [} Hi +74.4% |1
e N e —————————————————— e e i
\ /

\N

[Figures from CLIP paper] 4
-
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pFedMoAP — Background and motivation

* Traditional fine-tuning of VLMs in federated settings is challenging due to high communication overhead,
leading researchers to explore prompt learning as a more efficient adaptation technique.

o
.' !
Caltech101 Prompt Accuracy Flowers102 Prompt Accuracyi (""" leanable context ) i
a [CLASS]. 82.68 ; a photo of a [CLASS]. 60.86 | : I
V| v | MR M || [ELAss] ; text encoder
a photo of [CLASS). 80.81 a flower photo of a [CLASS]. 65.81 | '\ J ' .
- 1
aehotoofalClASSL 3629, [ " Y. _2photoofa[CLASS] atype of flower. ___| [ N S
1 1 1
§ V1L [VI: ... [VIw [CLASS]. 91.83 | 9451 |
1
= (ﬁ)— ————————————— L4 S J
airplane butterfly |[--- pizza
Describable Textures (DTD) Prompt Accuracy Prompt Accuracy
A P e B A 4 A
LK a photo of a [CLASS]. 39.83 a photo of a [CLASS]. 24.17 _—
& a photo of a [CLASS] texture.  40.25 a satellite photo of [CLASS)]. 37.46 feanties
(oaswe o3 A A — ol
i 1
1 [V]; [V]; ... [V]m [CLASS]. 63.58 | (V11 [V]; - [Vl [CLASS]. 8353 | s—ry
1
L o) ' s ) I {Zhouet ai'.,'Z'e'Z'l‘] features k maximize the score for the

ground-truth class

[Zhou et al., 2021]
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pFedMoAP — Background and motivation

e Existing federated prompt learning works
* Habitually fall into traditional FL paradigm where clients are restricted to downloading only a single globally
aggregated model — not fully leveraging the prompt’s lightweight nature

* Struggling to handle extreme data heterogeneity, lacking personalization strategies. ... .

ViT-b-16
86.4

-

o
~
L

Param Update  Aggregation  Param Update
g 2 ? ResNet50
% Tuned g Frozen e < 7 ResNet18 _23.6
=== =p Server Update g e ’ ) 11.7
= === Local Update / 10

10°

Prompt Learner ﬁa

————— —

=
o
L

Prompt
P1 ompt Learner ﬁ Vc?;]tl(;?s —
Text Cos Inlage

[Class]
Encoder “T” Encoder

oS, P z . Logits <
- " Secure
___Inference
> Classification Logits
.’

Leamable Prompt
P R Vectors
arameters —» [Class]

Log scale #parameters/10°

o i e e e e

=
o
|

~

N e o e e e e o e e e
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pFedMoAP — Background and motivation

Research question 4: How can we devise a personalized federated
learning framework, tailored for prompt learning in CLIP-like VLMs,
while fully exploiting the lightweight nature of the prompts?

Text Image . .
feature feature Train  Fix

——————————

* Personalized Federated Mixture of Adaptive Prompts

Clients

(pFedMoOAP) - b
* Allows download of multiple pre-aggregated prompts e :
* Uses a Mixture of Experts approach to treat locally G B

updated prompts as specialized experts
* Implements a client-specific, attention-based gating
network to generate enhanced text features
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pFedMoAP — Method

* Formulations for existing paradigms

N
* Global objective of PFL i, r(g,....0x) = min S piFi(6)
01....0N ‘ 010y = T
B E Vs | V]2 [VIm : [CLASS] text d
* Prompt learning for CLIP-like VLMs R i
e Learnable prompt P = {p.....p} € R* _| | .|
e Full prompt P(of class c is P with embedding of label ¢
* Classification
{ logit') = sim(f(x). g(P*)) | x:image = A
——————— ) e f(-): CLIP’s image encoder g s
p(§ = clz) = exp | logit )/T) g(+): CLIP’s text encoder oo Eaoppere
S exp (logit(k) /T) T: temperature

i N': Hexperts
E(-): an expert

* Mixture of Experts (MoE) output' UOE( )= ZG(“’%"E:‘(“’).

G (+): gating, usually softmax of TopK/N from projected x
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pFedMoAP — Method
* Workflow

 Server maintains a pool of prompts P: =Pii — {P/"'}icp,_ins, + { P, }jes,
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pFedMoAP — Method
 Workflow

Client,
* Eachclienti € S; download K pre-aggregated (non-local) prompt

P 1
* K-Nearest Neighbors (KNN) since most likely to have similar distribution
» Qi = {NL;} ]2, : set of clients assigned to client i, with prompts Py, (NL=

abbr. for non-local)
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pFedMoAP — Method
* Workflow

&

Train  Fix

Text Image
feature feature

» Before local training, for once, client compute (fixed) text feature from
non-local prompts Ve e [C]. T\) = {T\] [T}, = a(Py} ). YNL; € Q;}
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pFedMoAP — Method
* Workflow

* Gating (detailed in following slides)

Text Image 6

Train  Fix

feature feature

Input type @: image feature Ir = f(xx)
Input type (2): text feature from local prompt 7. = ¢(P)
Input type (3): text features from non-local prompts T

Output: MoE text feature Vee [C]. Ty, = G(L.T,7 . T\ |6;)
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pFedMoAP — Method
* Workflow

Text Image 6

Train  Fix

feature feature

* Final step: compute logits, manually address local prompt since it is the
only locally learnable prompt e € [C]. logit® = sim(Ix. Ty;) ) + A - sim(I;. T,”)




University of
w Pittsburgh

pFedMoAP — Method

e Attention-based gating network: mechanism

(€)
! Tm.1

3) . ©)

| Ty LA
]

(3) (€)

Tyi, Ty,

CLIP’s
Text
Encoder

Network
G(-18;)

v

11| g®| |1 L»%—;krg;gg,f;;g,,ﬁ;gs o o | a
e Multi-head attention

* Pooling on features to reduce the size of gating from 1024 to 128
* Q=Pooling( L), K=V=Pooling{ T,”, T\ . Tx),. ... Ty}, }
» MOoE text feature: T\%) . = G(I,. T\ . T} |6;) = MHA(Q. K. V') = Concat(head; . .... head,)/W° head, = Attention(QW&, KWE VIVY)




pFedMoAP — Method

* Attention-based gating network: design rationale against
traditional projection-based gating network o

| Tal, Thyd Thy | T,
* Projection-based gating network Gprj(xr) € R*! s ... B
N | ® Text
MoE(z) =S " G(x), - Ei(z) : -
e Attention-based gating against projection-based gating 1

- | (1) (2) 3.
» T, o 5

A
3) 3) 1
g 1 Tagy MLy \
1 1
i ! ase
1 (3 3 1 atin
T 1 N3 Nig etworl
i ! ]
1 3 i
: :
1 1
I G ! !
; A
: CLIP’s A a
L\
N (| - il - o
/ Y Encoder
logits

* ismore robust to adaptive experts
e serves as linear probing with more capacity

leverages CLIP's feature alignment with attention mechanism
* isagnostic to experts' order
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pFedMOoAP — Experiments & results

* Datasets
Dataset Training Set Size Test Set Size Number of Classes Number of Clients Sample Rate Data Heterogeneity
Flowers102 4,093 2,463 102 10 100% Pathological non-IID )
OxfordPets 2,944 3,669 37 10 100% Pathological non-1ID
Food101 50,500 30,300 101 10 100% Pathological non-IID — CLI P datasetS, pathOIOglcaI Ia bel Shlft
Caltech101 4,128 2,465 100 10 100% Pathological non-IID
DTD 2,820 1,692 47 10 100% Pathological non-IID
ijal:N';hm ?:238 T:;a 12 zz zz: E.ri: Domain adaptation datasets, feature + label shift
CIFAR10 50,000 10,000 10 100 10% Dir(0.5) CI FAR 10/100’ Practlcal Ia bel Sh Ift

CIFAR100 50,000 10,000 100 100 10% Dir(0.5)
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pFedMOoAP — Experiments & results

 Compared methods

* Datasets

e . . _ * Local methods
Dataset Training Set Size Test Set Size Number of Classes Number of Clients Sample Rate Data Heterogeneity
Flowers102 4,093 2,463 102 10 100% Pathological non-IID ¢ ZerO-S h Ot CLI P
OxfordPets 2,944 3,669 37 10 100% Pathological non-TID ° COO p ( p rom pt | ear ni ng)
Food101 50,500 30,300 101 10 100% Pathological non-IID .
Caltech101 4,128 2,465 100 10 100% Pathological non-IID ¢ FEderated prompt Iearnlng + FL/PFL
DTD 2,820 1,692 47 10 100% Pathological non-1ID * Prom pt FL
Office-Caltech10 2,025 508 10 20 50% Dir(0.3) e Prom pt FL + Fe d Prox
DomainNet 18,278 4,573 10 30 25% Dir(0.3)
CIFAR10 50,000 10,000 10 100 10% Dir(0.5) * Prom pt FL+FT
CIFAR100 50,000 10,000 100 100 10% DIr(0.5) e Prom ptF L + FedAMP

* PromptFL + FedPer
[ ]

Personalization designed for federated
prompt learning

 pFedPrompt

 FedOTP




pFedMOoAP — Experiments & results

e Pathological label shift on CLIP datasets

Flowers102  OxfordPets  Food101 Caltech101 DTD
ZS-CLIP [71] 62.17+0.12 84.47+0.01 75.27+0.05 85.144+0.24 40.21+0.12
CoOp [100] 70.14+0.76  83.21+£1.30 70.43+2.42 87.37+0.44 44.2340.63
PromptFL [31] 72.80+1.14 90.79+£0.61 77.31+1.64 89.70+£1.99 54.1140.22
PromptFL+FET [12] 72.31+£0.91 91.23+£0.50 77.16+1.56 89.70+0.25 53.74+1.36
PromptFL+FedPer [3] 72114135 89.50+1.62 71.29+1.87 86.72+1.45 50.23+0.82
PromptFL+FedProx [50] 66.40+0.29 892434041 76.24+1.94 89.41+0.55 44.26%1.11
PromptFL+FedAMP [37] 69.10+0.13 80.21+0.44 74.48+1.71 87.31+1.60 47.164+0.92
pFedPrompt [30] 86.46x0.15 91.84+041 92.26£1.34 96.54+1.31 77.1440.09
FedOTP [48] 96.23+0.44 98.82+0.11 92.73+0.15 97.024+0.36 87.64+0.70
pFedMoAP (A=0.0) 97.61+0.11 94.83+0.65 86.71+0.15 95.714+0.37 85.64+0.34
pFedMoAP (A=0.5) 98.41+0.04  99.06+0.09 93.39+0.09 97.95+0.07 89.13+0.54

University of

Pittsburgh
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pFedMOoAP — Experiments & results

* Feature + label shift on domain adaptation datasets
* 5 clients/domain, Dir(a = 0.3)

* Practical label shift on CIFAR datasets
* Dir(a = 0.5), 100 clients, 10%
sample rate, 120 rounds

 DomainNet = 30 clients, 25% sample rate, 25 rounds
e Office-Caltech10 = 20 clients, 50% sample rate
* CLIP backbone: ViT-b-16

* CLIP backbone: ResNet50 DomainNet  Clipart  Infograph  Painting  Quickdraw  Real Sketch  Average
ZS CLIP 9.18+0.62  10.03+0.16 9.93+0.51 1025+0.40 9.90+1.30 9.54+1.13  9.81%0.30
Co0p 4384351  45.72+0.85 20.94+046 36.83+1.17 31642049 33.97+0.78 36.99+0.79
CIFAR10  CIFAR10 PromptFL 27.63+16.41 27.69+18.07 21.62+8.34 23.45+13.49 20.62+11.03 25.90+8.10 24.48+12.52
Prompt+FedProx 222341542 21.75417.00 18584815 19401259 17.17+10.25 22494844 20.27+11.83
ZS CLIP [79) 53.46+0.21 32.68+0.00
pFedMoAP 47494064 4673071 32.74+0.84 37.1640.34  31.02+059 37.67+072 38.80+0.11
CoOp [115] 80.84:£0.30 48.7440.17
PromptFL [36] 73.29-£0.37  45.00-£0.62 Office-Caltech10 Amazon  Caltech DSLR ~ Webcam  Average
Prompt+FedProx [57] 73.3240.34 45.63+0.75 2S-CLIP [79] 9.83+1.63 10.67+0.89 10.89+1.40 6.2043.84 9.40+0.77
CoOp [115] 30.29+3.64 35.88+1.30 29.89+5.15 33434225 32.37+1.81
pFedMoAP 83.46+0.53 53.424+0.22
PromptFL [36] 21.08+9.60 23.72+12.21 22.94+7.96 25.8847.72 23.41+9.06
Prompt+FedProx [57] 18.64+8.58 19.56+11.59 20.89+7.38 22.96+7.56 20.51+8.48
pFedMoAP 35.47+1.37 37.45+1.33 45.11+3.14 35.2241.04 38.31+1.21




pFedMOoAP — Experiments & results

e Contributions of experts

non-local 8 non-local 7

non-local 9 non-local 6

local
non-local 5

non-local 4
non-local 1

non-local 3
non-local 2

(a) Caltechl101, 10 experts

non-local 8 non-local 7

non-local 9 non-local 6

local
non-local 5

non-local 4
non-local 1

non-local 3

non-local 2

(d) Flowers102, 10 experts

non-local 7 non-local 6
non-local 8

non-local 5
non-local 9

non-local 4
local

non-local 3

non-local 1

non-local 2

(b) DTD, 10 experts

non-local 8 non-local 7

non-local 9 non-local 6

non-local 5

local

non-local 4

non-focal 1
non-local 3

non-local 2

(e) OxfordPets, 10 experts

University of
Pittsburgh

non-local 8 ——

non-local 9

non-local 6

local

non-local 5

non-local 1

non-local 4

non-local 2 non-local 3

(c) Food101, 10 experts

non-lolfiypea! 16 non-local 15
non-local 18 non-local 14

non-local 19 non-local 13

local 4 non-local 12

non-local 11

non-local 1

non-local 10
non-local 9
e non-local 8
non-local 3 non-local 7
non-local 4 non-locargmlo(al 6

(f) DomainNet, 20 experts




pFedMOoAP — Experiments & results

* Attention-based vs. linear projection-base gating network

Flowers102 OxfordPets Foodl01  Caltechl101 DTD
Linear projection-based (3 experts) 86.924+1.84 90.54+1.33 78.19£3.07 &89.59+1.46 61.4245.43
Linear projection-based (10 experts) 69.64+4.57 52.78+6.88 77.39+3.29 86.57+1.96 30.424+7.14
Attention-based, with aggregation 97.56x0.07 98.24+0.12 91.89+£0.19 96.17+0.18 87.5240.69
Attention-based, without aggregation (ours) 98.41+0.04 99.06+0.09 93.394+0.09 97.95+0.07 89.13+0.54

University of

Pittsburgh
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pFedI\/IoAP Ablatio

n studies

Details in paper

Differential privacy

Flowers102 OxfordPets Flowers102 OxfordPets Food101  Caltech101 DTD
i T 92.5
598 /‘/‘7 . 56 Without differential privacy (from Tab. 11)
£ 901 T 961 i =
€ 4 | - PromptFL [36] 72.80+1.14 90.7940.61 77.31+1.64 89.704+1.99 54.11-+0.22
S 11 S g 85.0
s " 571 5 a2 PromptFL+FedProx [57] 66.40+£0.29 89.2440.41 76.24+1.94 89.4140.55 44.2641.11
= =90 4 T
7°-s.<._,/,4< 88_\4:34: jj: pFedMoAP (ours) 98.41£0.04 99.0640.09 93.39+0.09 97.954+0.07 89.1340.54
12 4 5 1o e 4 6 13
#sh Ots Number of Shots Number of Shots Number of Shots With differential privacy (E —_ 50)
Caltech101 DTD
o8 7 == %0 PromptFL [36] 67.0740.60 88.054+0.32 77.41+0.60 84.83+0.42 38.3941.25
a1 ////( N PromptFL+FedProx [57] 66.2240.63 87.7840.61 77.27+0.59 84.68+0.64 39.4341.11
gt i g 701 |
S §” pFedMoAP (ours) 98.34+0.06 99.0840.02 93.36+0.04 97.9040.08 89.99-4-0.49
< < 601
% 904! g —8— PromptFL . . . .
= o = s | 5 :;Zf:;t:::Fedeox With differential privacy (e = 25)
'i - : - "#:'4415 . - - PromptFL [36] 64.25£1.10 86.264+1.07 76.84+0.66 85.00+1.59 38.1940.66
fumber of Shots umber of Shots PromptFL+FedProx [57] 62.87+0.99 86.82:+£0.47 76.2140.64 84.51+1.52 37.8240.52
100 Flowers102 OxfordPets - Food101 PFedMoAP (ours) 98.36+0.12 99.02+0.04 93.41+0.13 97.994+0.06 89.1140.28
95 _‘
g 9 : g ; ;
g ‘ : : Feature dimension
< < <
85
‘ Gating network size | Flowersl02 OxfordPets Food101  Caltech101 DTD
80 - T T N
2 M0 e i SO e T diagure = 32 4.2K 97.2840.18 98.75+0.32 93.4240.08 97.37+0.08 88.6140.89
100 Caltech:02 100 P dteature = 64 16.6K 98.5540.10 98.914£0.23 93.89+0.12 97.75+0.12 89.960.09
FedMoAP
. 05 1 - 0.0 Qrenture = 128 66.0K 98.41+0.04 99.06+0.09 93.3940.09 97.9540.07 89.1340.54
S ES . A =05
g ‘ g e dreature = 256 263.2K 99.01£0.05 98.88+£0.21 92.49+0.20 97.93+0.07 90.8840.16
< ‘ < . dreature = 512 1.1M 08.1840.38 96.85+0.22 90.3440.31 96.9940.11 89.6540.10
A=5.0
‘ dreature = 1024 4.2M 98.1140.33 95.81+0.84 89.2040.37 96.8240.26 89.0340.14
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Overview

RSNA2025¢ Case Study: Personalized, Real-World, and Cross-Silo Federated Learning for Breast Cancer Detection
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Case study: PFL for real-world breast cancer detection

* Challenges in FL for Medical Imaging

* Limited sample size
* Due to high costs of medical imaging and labeling
* Leads to more severely inconsistent local objectives
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Case study: PFL for real-world breast cancer detection

* Challenges in FL for Medical Imaging

* Data distribution bias
* Local demographics can hardly represent large population
e Global distribution often presents extreme imbalance
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Case study: PFL for real-world breast cancer detection

* Challenges in FL for Medical Imaging

* Both feature and label shift
* Decease prevalence Geographical regions and demographics
Institutional specialization
Equipment variations
Clinical protocol differences
Healthcare access across demographics
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Case study: PFL for real-world breast cancer detection

* Challenges in FL for Medical Imaging

* Uncertainty in labels
e Subjective nature of medical image interpretation causes challenges in terms
of label quality and consistency
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Case study: PFL for real-world breast cancer detection

* Challenges in FL for Medical Imaging
* Limited sample size
* Data distribution bias
* Both feature and label shift
* Uncertainty in labels

Research question 5: How can we carefully implement, train,
and evaluate existing FL/PFL algorithms and potentially design
novel federated frameworks to address the challenges in
medical imaging applications?
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Case study: PFL for real-world breast cancer detection

Normal Normal Cancer Cancer
by s

* Datasets

* RSNA breast cancer detectinon: 54K
mammograms with metadata

 CBIS-DDSM: 3K annotated
mammograms with pixel-level lesion
masks.

e CMMD: 5K studies from two Chinese &5
hospitals for cross-domain evaluation.

Normal Normal Cancer Cancer

Normal Normal Cancer Cancer

Dataset:
CMMD
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Case study: PFL for real-world breast cancer detection

e Data partition for FL

Setting Client Dataset Source Cancer Images Normal Images

* Setting 1: Client 1 RSNA Machine 49 628 2,512
* RSNAonly . | Client 2 RSNA Machine 48 187 1,122
i+i i ettin,
* Partitioned by machine ID &% Client 3 RSNA Machine 29 184 1,104
Client 4 RSNA Machine 21 159 1,272
* Setting 2:
Client 1 RSNA Site A 664 2,656
* RSNA, CBIS-DDSM, CMMD e e ’
e Partitioned by datasets Setting 2 Client 2 RSNA Site B 494 2,964
Client 3  CBIS-DDSM 1,350 1,753
« 85% training, 15% validation Client 4 CMMD 4,094 1,108
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Case study: PFL for real-world breast cancer detection

* Methods * Generative data augmentation
* Local * Mitigating imbalance
* FedAvg * Mitigating heterogeneity
e APPLE Synthetic
* PGFed
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Case study: PFL for real-world breast cancer detection

* Methods * Generative data augmentation
* Local * Mitigating imbalance
* Mitigating heterogeneity

ataset:
SSSSSSSSS

Failed cases: Setting 2 client 2 synthesized images
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Case study: PFL for real-world breast cancer detection

* Results

{ Mean Mean!{ Client 1 Client 2 Client 3  Client 4  Mean gain ||Mean Mean Client1 ~ Client2 ~ Client3  Client 4  Mean gain
Algorithm; AUC Acc. HAUC (gain) AUC (gain) AUC (gain) AUC (gain) +std !JAUC Acc. AUC (gain) AUC (gain) AUC (gain) AUC (gain) +std

$ V=== =====================================================+
Real data only )
Local 66.50 8220  64.85 (0.00)  73.37 (0.00)  60.93 (0.00)  67.21 (0.00)  0.00 £ 0.00 |62.37 73.86 60.96 (0.00)  62.47 (0.00)  64.74 (0.00)  61.32 (0.00)  0.00 % 0.00
FedAvg ~ 63.00 8426 7424 (9.39) 60.90 (-12.47) 57.29 (-3.64) 66.99 (-0.22) -1.73+£7.82 |64.48 7543  69.55 (8.59)  65.50 (3.04)  64.49 (-0.25) 62.13 (0.81) 3.05 £ 3.41
APPLE 60.01 8524 71.92 (7.07) 7094 (-2.43) 64.48 (3.55) 7232 (5.10) 3.32+3.55 |65.80 76.13 7151 (10.54) 64.22 (1.75)  690.26 (4.51)  63.28 (1.96) 4.60 + 3.55
PGFed 60.32 8476  74.54 (9.69) 72.25 (-1.12)  66.72 (5.79) 73.95 (6.74) 527 +3.96 |66.40 77.13  70.21 (9.24)  69.16 (6.69)  68.33 (3.58)  64.98 (3.66) 5.79 + 2.35

Setting 1: RSNA only Setting 2: Multiple datasets
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Case study: PFL for real-world breast cancer detection

* Results

Mean Mean Client 1 Client 2 Client 3 Client 4 Mean gain |Mean Mean Client 1 Client 2 Client 3 Client 4 Mean gain

Algorithm AUC Acc. AUC (gain) AUC (gain) AUC (gain) AUC (gain) +std AUC Acc. AUC (gain) AUC (gain) AUC (gain) AUC (gain) +std
Real data only )

Tocal 66.591 8229  64.85 (0.00)  73.37 (0.00)  60.93 (0.00)  67.21 (0.00)  0.00 = 0.00 '—6-2.-3-7_‘= 73.86  60.96 (0.00)  62.47 (0.00)  64.74 (0.00)  61.32 (0.00)  0.00 = 0.00
1 1
\FedAvg____ 63.09) 8426 74.24 (9.39) 60.90 (-12.47) 57.29 (-3.64) 66.99 (-0.22) -1.73 +£7.82 |64.48 1 7543  69.55 (8.59) 6550 (3.04) 64.49 (-0.25) 6213 (0.81) 3.05 % 3.41
(APPLE 69.0T) 8524 7192 (7.07) 70.94 (243) 6448 (3.55) 72.32(5.10) 3324355 [65.801 7613 7151 (10.54) 6422 (1.75)  69.26 (451) 6328 (1.96) 4.69 + 3.55
1 1
\PGFed _____ 69.32) 8476  74.54 (9.69) 7225 (-1.12)  66.72 (5.79)  73.95 (6.74) 527 £3.96 [66.40 1 7713  70.21 (9.24)  69.16 (6.69)  68.33 (3.58)  64.98 (3.66) 5.79 & 2.35

Setting 1: RSNA only Setting 2: Multiple datasets
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Case study: PFL for real-world breast cancer detection

* Results
Mean Mean  Client 1 Client 2 Client 3 Client 4 Mean gain |Mean Mean  Client 1 Client 2 Client 3 Client 4  Mean gain
Algorithm AUC Acc. AUC (gain) AUC (gain) AUC (gain) AUC (gain) +std AUC Acc. AUC (gain) AUC (gain) AUC (gain) AUC (gain) +std
Real data only )

Local 66.59 8229 64.85(0.00)  73.37 (0.00)  60.93 (0.00)  67.21 (0.00)  0.00 = 0.00
FedAvg 63.09 8426 74.24 (9.39) 60.90 (-12.47) 57.29 (-3.64) 66.99 (-0.22) -1.73 & 7.82
APPLE 69.01 8524 71.92(7.07) 7094 (-243) 64.48 (3.55) 7232 (5.10) 3.32 + 3.55
PGFed 60.32 8476 74.54 (9.69) 7225 (-1.12)  66.72 (5.79)  73.95 (6.74)  5.27 + 3.96

62.37 73.86  60.96 (0.00)  62.47 (0.00)  64.74 (0.00)  61.32 (0.00)  0.00 = 0.00
64.48 7543  69.55 (8.59)  65.50 (3.04) 64.49 (-0.25) 62.13 (0.81) 3.05 & 3.41
65.80 76.13 7151 (10.54) 64.22 (1.75)  69.26 (4.51)  63.28 (1.96) 4.69 + 3.55
66.40 77.13 7021 (9.24)  69.16 (6.69)  68.33 (3.58)  64.98 (3.66) 5.79 =+ 2.35

Adding synthesized data; FID score for client 1: 125.61, client 2: 220.52, client 8: 194.73, client 4: 184.41

Setting 1: RSNA only

sized data; FID score for client 1: 120.23, client 2: 200.91, client 3: N/A, client 4: 58.86

Setting 2: Multiple datasets
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Case study: PFL for real-world breast cancer detection

* Results
Mean Mean Client 1 Client 2 Client 3 Client 4 Mean gain |Mean Mean Client 1 Client 2 Client 3 Client 4 Mean gain
Algorithm AUC Acc. AUC (gain) AUC (gain) AUC (gain) AUC (gain) +std AUC Acc. AUC (gain) AUC (gain) AUC (gain) AUC (gain) +std
Real data only )
Local 6650 8220  64.85 (0.00){ 7337 (0.00) 160.93 (0.00)  67.21 (0.00) 000+ 000 |6237 73.86 60.96 (0.00)  62.47 (0.00)  64.74 (0.00)  61.32 (0.00) I 0.00 = 0.00
1 1
Fedavg 6309 8426 74.24 (9.39)} 60.90 (-1247) 15720 (-3.64) 66.99 (-0.22) -173+£7.82 |6448 7543 6955 (859) 6550 (3.04) 6449 (0.25) 6213 (0.81) | 3.05 + 3.41
] ]
APPLE 690.01 85.24 7192 (7.07)! 70.94 (-2.43) | 6448 (3.55)  72.32 (5.10) 3324355 |6589 7613 7151 (10.54) 6422 (1.75)  69.26 (451)] 63.28 (1.96) | 4.69 + 3.55
1 1
PGFed 60.32 8476 7454 (9.69)\_ 7225 (-1.12) 166.72 (5.79) 73.95 (6.74) 527 +3.96 |66.40 7713  70.21 (9.24)  69.16 (6.69)  68.33 (3.58),  64.98 (3.66) 1579 £235

Adding synthesized data;, FID score for client 1: 125. 61{ client 2: 220.52, Ech’ent 3: 194.73, client 4: 184.41 |sized data; FID score for client 1: 120.23, client 2: 200.91, client 3: N/A,{chent 4: 58.86 !

Local 67.06 84.73  69.42 (0.00) { 75.31 (0.00) ‘556.49 (0.00)  63.36 (0.00)  0.00 4+ 0.00 |63.01 72.89 64.89 (0.00)  60.90 (0.00)  64.74 (0.00) :"'3375'2'('0'.65)"‘:0.00 £ 0.00
FedAvg 64.51 84.49  70.47 (1.05) i 55.28 (-20.03) 16260 (6.20)  7TLEO (8.24) -1.14+1122 |6420 7487 6823 (3.34) 6480 (3.90) 6584 (L10)| 63.26 (1.74) 22.52 +1.14
APPLE 67.40 8480 69.01 (-0.41)| 63.60 (-1162) 6651 (10.02) 6894 (5.58) 089812 |6638 7674 67.59 (270) 6352 (262) 7T2.72 (7.98)1  65.77 (4.25) 14.39 £ 2.17
PGFed 7041 8476  72.61 (3.19) \_68.56 (-6.75) 67.77 (11.28) 74.32 (10.96) 4.67+7.35 |67.41 77.03 7116 (627) 7172 (10.82) 70.38 (5.64) i‘_ 64.42 (2.90) 1641 & 2.85

Setting 1: RSNA only Setting 2: Multiple datasets
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Case study: PFL for real-world breast cancer detection

* Summary
* Traditional FL (e.g. FedAvg) < Local with severe heterogeneity
* Proposed PFL (APPLE, PGFed) > FedAvg and Local
* Generated data: higher perceptive quality usually translate to higher performance

* For a FL system deployed in real-world
e (Can use more advanced model with better pretraining.

* Practical hyperparameter tuning is hard, alg’s with more hyperparameters is harder to deploy
e Research: same values for all clients, global metrics for selection.
* Real-world: clients can use different values, local metrics for selection.

 Example, hyperparameters: a 2 values, b 3 values,research has 2x3=6 combinations, real-
world a4, by, a,, b,, as, b3, a,, b,: (2x3)"4=1296 combinations
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Overview

* Summary
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Summary of the four FL/PFL algorithms

FedSLD (Global FL) PGFed (PFL) (soe pFedMoAP (PFL)

min ¥, 7 Fi(6;)

APPLE (PFL)

Text Image
feature feature

_________________

Train  Fix

I I I
I I I
I I I
Client 1 Client N ! ! !
nyc Nyc 1 Client 1 I [Clienti minFi(6,a)= Explicit Client k I (==
1 . 8 f;(éi)_'—ﬂzaij':’-széi_)‘: o || minF(80) = fiB) | 1
*e L)) _ (c) + (©) + (c) ! = (ours) Implicit !
1 Wy T = Prajw, P1,2|w, P13 Wa I | Too much comm. to access f;(-), ¥j? :‘:‘a‘;‘:’!‘::ﬂ 1
%u' %ﬂ.‘ : : Estimate! fj(9i)z)‘]»(ﬂj)+l71fj(gj)r(9i—9j) (existing) : ot e
————————————————— I I R I e
I I I
Estimate prior and reweighting: PFL with adaptive aggregation : Explicit and efficient personalized global : PFL prompt learning for CLIP with attention-
I 4' objective with first order approximation :_ based gating network in a MoE structure
_________________ T e T
I I I
+ Sharable label dist. : + Adaptive personalized aggregation: + More generalized personalized models : + Pre-aggregated prompts sharing allows MoE
+ Reweights sample loss 1 + Flexible between glob./pers. obj’s 1 + Explicitness with O(N) communication 1 + Flexible and robust attention-based gating
I I
I I
————————————————— r——————————————————— ————————————————————————r——————————————————————————
I
I

- Large comm. (O(N?)) = cross-silo
- Larger memory footprint

- Limited performance gain
- Only considers label shift

- Slightly larger communication than FedAvg: - Clients needs to be able to run CLIP

- Requires extra server computation/storager - Computation slightly T as #experts T
I
|

|
|
1
|
|
|
|
|
|
|
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Summary of the four FL/PFL algorithms

FedSLD (Global FL)

APPLE (PFL) PGFed (PFL)

Client 1 Client N
Client i min Fi (65, ) = Explicit Client k
R ) knowledge i —
i@+ ayf (00 wanster |..o| B e = A0
= T (ours) Implicit 1 :
Too much comm. to access f;(-), Vj? :mnw!ledze E i
ransfer
Estimate! /;(9) ~ £;(6,) + V/;(6,)" (6: — 6)) (existing) I :

|
|
|
|
nl-Cl M. : Client 1
LN I
1 W1(p) = pl,l[wl(c)] +P1,2EVZ(C)J +P1,3[w:,fc)]
|
. |

Estimate prior and reweighting: PFL with adaptive aggregation

ST Mixture

Explicit and efficient personalized global
objective with first order approximation

PFL prompt learning for CLIP with attention-
based gating network in a MoE structure

T

Summary of FL case study: breast cancer detection

Traditional FL (e.g. FedAvg) < Local with sever heterogeneity

Proposed PFL (APPLE, PGFed) > FedAvg and Local

Generated data: higher perceptive quality usually translate to higher performance

Deploying FL system in real-world will face more challenges (e.g. hyperparameter tuning across
heterogeneous clients).




Sh University of
w Pittsburgh

Future directions

Federated learning with large foundation models.

Synthetic data generation and augmentation via foundation models.
* Enhancing privacy, security, and trustworthiness in FL.

* Developing multimodal federated systems across diverse domains.
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